Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Genomics ; 26(1): 158, 2025 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-39966714

RESUMEN

BACKGROUND: The nematode phylum includes many species key to soil food webs with trophic behaviours extending from feeding on microbes to macrofauna and plant roots. Among these, the plant parasitic cyst nematodes retain their eggs in protective cysts prolonging their survival under harsh conditions. These nematodes, including those from the genus Heterodera, cause significant economic losses in agricultural systems. Understanding of nematode diversity and ecology has expanded through application of genomic research, however, for Heterodera species there are very few available whole genome sequences. Sequencing and assembling Heterodera genomes is challenging due to various technical limitations imposed by the biology of Heterodera. Overcoming these limitations is essential for comprehensive insights into Heterodera parasitic interactions with plants, population studies, and for Australian biosecurity implications. RESULTS: We hereby present draft genomes of six species of which Heterodera australis, H. humuli, H. mani and H. trifolii are presently recorded in Australia and two species, H. avenae and H. filipjevi, currently absent from Australia. The draft genomes were sequenced from genomic DNA isolated from 50 cysts each using an Illumina NovaSeq short read sequencing platform. The data revealed disparity in sequencing yield between species. What was previously identified as H. avenae in Australia using morphological traits is now confirmed as H. australis and may have consequences for wheat breeding programs in Australia that are breeding for resistance to H. avenae. A multigene phylogeny placed the sequenced species into taxonomic phylogenetic perspective. Genomic comparisons within the Avenae species group revealed orthologous gene clusters within the species, emphasising the shared and unique features of the group. The data also revealed the presence of a Wolbachia species, a putative bacterial endosymbiont from Heterodera humuli short read sequencing data. CONCLUSION: Genomic research holds immense significance for agriculture, for understanding pest species diversity and the development of effective management strategies. This study provides insight into Heterodera, cyst nematode genomics and the associated symbionts and this work will serve as a baseline for further genomic analyses in this economically important nematode group.


Asunto(s)
Genoma de los Helmintos , Genómica , Suelo , Tylenchoidea , Animales , Filogenia , Suelo/parasitología , Tylenchoidea/genética , Tylenchoidea/clasificación , Tylenchoidea/aislamiento & purificación
2.
Theor Appl Genet ; 127(6): 1409-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24748126

RESUMEN

KEY MESSAGE: A whole genome average interval mapping approach identified eight QTL associated with P. thornei resistance in a DH population from a cross between the synthetic-derived wheat Sokoll and cultivar Krichauff. Pratylenchus thornei are migratory nematodes that feed and reproduce within the wheat root cortex, causing cell death (lesions) resulting in severe yield reductions globally. Genotypic selection using molecular markers closely linked to Pratylenchus resistance genes will accelerate the development of new resistant cultivars by reducing the need for laborious and expensive resistance phenotyping. A doubled haploid wheat population (150 lines) from a cross between the synthetic-derived cultivar Sokoll (P. thornei resistant) and cultivar Krichauff (P. thornei moderately susceptible) was used to identify quantitative trait loci (QTL) associated with P. thornei resistance. The resistance identified in the glasshouse was validated in a field trial. A genetic map was constructed using Diversity Array Technology and the QTL regions identified were further targeted with simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. Six significant and two suggestive P. thornei resistance QTL were detected using a whole genome average interval mapping approach. Three QTL were identified on chromosome 2B, two on chromosome 6D, and a single QTL on each of chromosomes 2A, 2D and 5D. The QTL on chromosomes 2BS and 6DS mapped to locations previously identified to be associated with Pratylenchus resistance. Together, the QTL on 2B (QRlnt.sk-2B.1-2B.3) and 6D (QRlnt.sk-6D.1 and 6D.2) explained 30 and 48 % of the genotypic variation, respectively. Flanking PCR-based markers based on SSRs and SNPs were developed for the major QTL on 2B and 6D and provide a cost-effective high-throughput tool for marker-assisted breeding of wheat with improved P. thornei resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Interacciones Huésped-Parásitos/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Genoma de Planta , Fenotipo , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA