Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 9(3): e90158, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24662889

RESUMEN

Clostridium difficile infection (CDI) is frequently diagnosed in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We characterized early-transplant CDI and its associations, and analyzed serially-collected feces to determine intestinal carriage of toxigenic C. difficile. Fecal specimens were collected longitudinally from 94 patients during allo-HSCT hospitalization, from the start of pre-transplant conditioning until up to 35 days after stem cell infusion. Presence of C. difficile 16S rRNA and tcdB genes was determined. Clinical variables and specimen data were analyzed for association with development of CDI. Historical data from an additional 1144 allo-HSCT patients was also used. Fecal specimens from 37 patients (39%) were found to harbor C. difficile. Early-transplant CDI was diagnosed in 16 of 94 (17%) patients undergoing allo-HSCT; cases were generally mild and resembled non-CDI diarrhea associated with transplant conditioning. CDI was associated with preceding colonization with tcdB-positive C. difficile and conditioning regimen intensity. We found no associations between early-transplant CDI and graft-versus-host disease or CDI later in transplant. CDI occurs with high frequency during the early phase of allo-HSCT, where recipients are pre-colonized with toxigenic C. difficile. During this time, CDI incidence peaks during pre-transplant conditioning, and is correlated to intensity of the treatment. In this unique setting, high rates of CDI may be explained by prior colonization and chemotherapy; however, cases were generally mild and resembled non-infectious diarrhea due to conditioning, raising concerns of misdiagnosis. Further study of this unique population with more discriminating CDI diagnostic tests are warranted.


Asunto(s)
Clostridioides difficile/fisiología , Infecciones por Clostridium/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adulto , Anciano , Estudios de Cohortes , Determinación de Punto Final , Heces/microbiología , Femenino , Humanos , Intestinos/microbiología , Masculino , Persona de Mediana Edad , Trasplante Homólogo/efectos adversos , Adulto Joven
2.
Nat Med ; 19(3): 372-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23435170

RESUMEN

Delayed T cell recovery and restricted T cell receptor (TCR) diversity after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are associated with increased risks of infection and cancer relapse. Technical challenges have limited faithful measurement of TCR diversity after allo-HSCT. Here we combined 5' rapid amplification of complementary DNA ends PCR with deep sequencing to quantify TCR diversity in 28 recipients of allo-HSCT using a single oligonucleotide pair. Analysis of duplicate blood samples confirmed that we accurately determined the frequency of individual TCRs. After 6 months, cord blood-graft recipients approximated the TCR diversity of healthy individuals, whereas recipients of T cell-depleted peripheral-blood stem cell grafts had 28-fold and 14-fold lower CD4(+) and CD8(+) T cell diversities, respectively. After 12 months, these deficiencies had improved for the CD4(+) but not the CD8(+) T cell compartment. Overall, this method provides unprecedented views of T cell repertoire recovery after allo-HSCT and may identify patients at high risk of infection or relapse.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Trasplante de Células Madre Hematopoyéticas , Receptores de Antígenos de Linfocitos T/genética , Secuencia de Bases , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Variación Genética , Neoplasias Hematológicas/sangre , Neoplasias Hematológicas/inmunología , Humanos , Recurrencia , Análisis de Secuencia de ADN
3.
Infect Immun ; 81(3): 965-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23319552

RESUMEN

Bacteria causing infections in hospitalized patients are increasingly antibiotic resistant. Classical infection control practices are only partially effective at preventing spread of antibiotic-resistant bacteria within hospitals. Because the density of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus (VRE) can exceed 10(9) organisms per gram of feces, even optimally implemented hygiene protocols often fail. Decreasing the density of intestinal colonization, therefore, represents an important approach to limit VRE transmission. We demonstrate that reintroduction of a diverse intestinal microbiota to densely VRE-colonized mice eliminates VRE from the intestinal tract. While oxygen-tolerant members of the microbiota are ineffective at eliminating VRE, administration of obligate anaerobic commensal bacteria to mice results in a billionfold reduction in the density of intestinal VRE colonization. 16S rRNA gene sequence analysis of intestinal bacterial populations isolated from mice that cleared VRE following microbiota reconstitution revealed that recolonization with a microbiota that contains Barnesiella correlates with VRE elimination. Characterization of the fecal microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation demonstrated that intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with VRE. Our studies indicate that obligate anaerobic bacteria belonging to the Barnesiella genus enable clearance of intestinal VRE colonization and may provide novel approaches to prevent the spread of highly antibiotic-resistant bacteria.


Asunto(s)
Bacteroidaceae/fisiología , Enterococcus faecium/efectos de los fármacos , Infecciones por Bacterias Grampositivas/terapia , Intestinos/microbiología , Resistencia a la Vancomicina , Animales , ADN Bacteriano , Femenino , Ratones , Ratones Endogámicos C57BL , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
4.
Clin Infect Dis ; 55(7): 905-14, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22718773

RESUMEN

BACKGROUND: Bacteremia is a frequent complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). It is unclear whether changes in the intestinal microbiota during allo-HSCT contribute to the development of bacteremia. We examined the microbiota of patients undergoing allo-HSCT, and correlated microbial shifts with the risk of bacteremia. METHODS: Fecal specimens were collected longitudinally from 94 patients undergoing allo-HSCT, from before transplant until 35 days after transplant. The intestinal microbiota was characterized by 454 pyrosequencing of the V1-V3 region of bacterial 16S ribosomal RNA genes. Microbial diversity was estimated by grouping sequences into operational taxonomic units and calculating the Shannon diversity index. Phylogenetic classification was obtained using the Ribosomal Database Project classifier. Associations of the microbiota with clinical predictors and outcomes were evaluated. RESULTS: During allo-HSCT, patients developed reduced diversity, with marked shifts in bacterial populations inhabiting the gut. Intestinal domination, defined as occupation of at least 30% of the microbiota by a single predominating bacterial taxon, occurred frequently. Commonly encountered dominating organisms included Enterococcus, Streptococcus, and various Proteobacteria. Enterococcal domination was increased 3-fold by metronidazole administration, whereas domination by Proteobacteria was reduced 10-fold by fluoroquinolone administration. As a predictor of outcomes, enterococcal domination increased the risk of Vancomycin-resistant Enterococcus bacteremia 9-fold, and proteobacterial domination increased the risk of gram-negative rod bacteremia 5-fold. CONCLUSIONS: During allo-HSCT, the diversity and stability of the intestinal flora are disrupted, resulting in domination by bacteria associated with subsequent bacteremia. Assessment of fecal microbiota identifies patients at highest risk for bloodstream infection during allo-HCST.


Asunto(s)
Bacteriemia/epidemiología , Bacteriemia/microbiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adulto , Anciano , Biodiversidad , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Heces/microbiología , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Filogenia , ARN Ribosómico 16S/genética , Factores de Riesgo , Análisis de Secuencia de ADN
5.
Arthritis Rheum ; 64(10): 3083-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22576262

RESUMEN

OBJECTIVE: To profile the abundance and diversity of subgingival oral microbiota in patients with never-treated, new-onset rheumatoid arthritis (RA). METHODS: Periodontal disease (PD) status, clinical activity, and sociodemographic factors were determined in patients with new-onset RA, patients with chronic RA, and healthy subjects. Multiplexed-454 pyrosequencing was used to compare the composition of subgingival microbiota and establish correlations between the presence/abundance of bacteria and disease phenotypes. Anti-Porphyromonas gingivalis antibody testing was performed to assess prior exposure to the bacterial pathogen P gingivalis. RESULTS: The more advanced forms of periodontitis were already present at disease onset in patients with new-onset RA. The subgingival microbiota observed in patients with new-onset RA was distinct from that found in healthy controls. In most cases, however, these microbial differences could be attributed to the severity of PD and were not inherent to RA. The presence and abundance of P gingivalis were also directly associated with the severity of PD and were not unique to RA. The presence of P gingivalis was not correlated with anti-citrullinated protein antibody (ACPA) titers. Overall exposure to P gingivalis was similar between patients with new-onset RA and controls, observed in 78% of patients and 83% of controls. The presence and abundance of Anaeroglobus geminatus correlated with the presence of ACPAs/rheumatoid factor. Prevotella and Leptotrichia species were the only characteristic taxa observed in patients with new-onset RA irrespective of PD status. CONCLUSION: Patients with new-onset RA exhibited a high prevalence of PD at disease onset, despite their young age and paucity of smoking history. The subgingival microbiota profile in patients with new-onset RA was similar to that in patients with chronic RA and healthy subjects whose PD was of comparable severity. Although colonization with P gingivalis correlated with the severity of PD, overall exposure to P gingivalis was similar among the groups. The role of A geminatus and Prevotella/Leptotrichia species in this process merits further study.


Asunto(s)
Artritis Reumatoide/microbiología , Metagenoma , Boca/microbiología , Periodontitis/microbiología , Adulto , Artritis Reumatoide/complicaciones , Artritis Reumatoide/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Boca/inmunología , Periodontitis/complicaciones , Periodontitis/inmunología , Porphyromonas gingivalis/inmunología , Índice de Severidad de la Enfermedad , Factores Socioeconómicos , Encuestas y Cuestionarios
6.
J Exp Med ; 209(5): 903-11, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22547653

RESUMEN

Despite a growing understanding of the link between intestinal inflammation and resident gut microbes, longitudinal studies of human flora before initial onset of intestinal inflammation have not been reported. Here, we demonstrate in murine and human recipients of allogeneic bone marrow transplantation (BMT) that intestinal inflammation secondary to graft-versus-host disease (GVHD) is associated with major shifts in the composition of the intestinal microbiota. The microbiota, in turn, can modulate the severity of intestinal inflammation. In mouse models of GVHD, we observed loss of overall diversity and expansion of Lactobacillales and loss of Clostridiales. Eliminating Lactobacillales from the flora of mice before BMT aggravated GVHD, whereas reintroducing the predominant species of Lactobacillus mediated significant protection against GVHD. We then characterized gut flora of patients during onset of intestinal inflammation caused by GVHD and found patterns mirroring those in mice. We also identified increased microbial chaos early after allogeneic BMT as a potential risk factor for subsequent GVHD. Together, these data demonstrate regulation of flora by intestinal inflammation and suggest that flora manipulation may reduce intestinal inflammation and improve outcomes for allogeneic BMT recipients.


Asunto(s)
Biodiversidad , Trasplante de Médula Ósea/efectos adversos , Enterocolitis/microbiología , Enfermedad Injerto contra Huésped/complicaciones , Metagenoma/genética , Ampicilina , Animales , Secuencia de Bases , Sulfato de Dextran , Enterocolitis/etiología , Enterocolitis/patología , Heces/microbiología , Enfermedad Injerto contra Huésped/microbiología , Bacterias Grampositivas/aislamiento & purificación , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Trasplante Homólogo
7.
Immunity ; 34(4): 590-601, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21458307

RESUMEN

Inflammatory (Ly6C(hi) CCR2+) monocytes provide defense against infections but also contribute to autoimmune diseases and atherosclerosis. Monocytes originate from bone marrow and their entry into the bloodstream requires stimulation of CCR2 chemokine receptor by monocyte chemotactic protein-1 (MCP1). How monocyte emigration from bone marrow is triggered by remote infections remains unclear. We demonstrated that low concentrations of Toll-like receptor (TLR) ligands in the bloodstream drive CCR2-dependent emigration of monocytes from bone marrow. Bone marrow mesenchymal stem cells (MSCs) and their progeny, including CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells, rapidly expressed MCP1 in response to circulating TLR ligands or bacterial infection and induced monocyte trafficking into the bloodstream. Targeted deletion of MCP1 from MSCs impaired monocyte emigration from bone marrow. Our findings suggest that bone marrow MSCs and CAR cells respond to circulating microbial molecules and regulate bloodstream monocyte frequencies by secreting MCP1 in proximity to bone marrow vascular sinuses.


Asunto(s)
Médula Ósea/inmunología , Movimiento Celular , Células Madre Mesenquimatosas/inmunología , Monocitos/citología , Monocitos/inmunología , Receptores Toll-Like/inmunología , Animales , Ligandos , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores CCR2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA