Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Platelets ; 35(1): 2358244, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38845541

RESUMEN

Thromboembolic events are common in patients with essential thrombocythemia (ET). However, the pathophysiological mechanisms underlying the increased thrombotic risk remain to be determined. Here, we perform the first phenotypical characterization of platelet expression using single-cell mass cytometry in six ET patients and six age- and sex-matched healthy individuals. A large panel of 18 transmembrane regulators of platelet function and activation were analyzed, at baseline and after ex-vivo stimulation with thrombin receptor-activating peptide (TRAP). We detected a significant overexpression of the activation marker CD62P (p-Selectin) (p = .049) and the collagen receptor GPVI (p = .044) in non-stimulated ET platelets. In contrast, ET platelets had a lower expression of the integrin subunits of the fibrinogen receptor GPIIb/IIIa CD41 (p = .036) and CD61 (p = .044) and of the von Willebrand factor receptor CD42b (p = .044). Using the FlowSOM algorithm, we identified 2 subclusters of ET platelets with a prothrombotic expression profile, one of them (cluster 3) significantly overrepresented in ET (22.13% of the total platelets in ET, 2.94% in controls, p = .035). Platelet counts were significantly increased in ET compared to controls (p = .0123). In ET, MPV inversely correlated with platelet count (r=-0.96). These data highlight the prothrombotic phenotype of ET and postulate GPVI as a potential target to prevent thrombosis in these patients.


Essential thrombocythemia (ET) is a rare disease characterized by an increased number of platelets in the blood. As a complication, many of these patients develop a blood clot, which can be life-threatening. So far, the reason behind the higher risk of blood clots is unclear. In this study, we analyzed platelet surface markers that play a critical role in platelet function and platelet activation using a modern technology called mass cytometry. For this purpose, blood samples from 6 patients with ET and 6 healthy control individuals were analyzed. We found significant differences between ET platelets and healthy platelets. ET platelets had higher expression levels of p-Selectin (CD62P), a key marker of platelet activation, and of the collagen receptor GPVI, which is important for clot formation. These results may be driven by a specific platelet subcluster overrepresented in ET. Other surface markers, such as the fibrinogen receptor GPIIb/IIIa CD41, CD61, and the von Willebrand factor receptor CD42b, were lower expressed in ET platelets. When ET platelets were treated with the clotting factor thrombin (thrombin receptor-activating peptide, TRAP), we found a differential response in platelet activation compared to healthy platelets. In conclusion, our results show an increased activation and clotting potential of ET platelets. The platelet surface protein GPVI may be a potential drug target to prevent abnormal blood clotting in ET patients.


Asunto(s)
Plaquetas , Trombocitemia Esencial , Trombosis , Humanos , Trombocitemia Esencial/metabolismo , Trombocitemia Esencial/complicaciones , Plaquetas/metabolismo , Masculino , Femenino , Trombosis/metabolismo , Trombosis/etiología , Persona de Mediana Edad , Anciano , Citometría de Flujo/métodos , Activación Plaquetaria , Estudios de Casos y Controles , Adulto
2.
Bioinform Adv ; 4(1): vbae034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505804

RESUMEN

Summary: Diseases can be caused by molecular perturbations that induce specific changes in regulatory interactions and their coordinated expression, also referred to as network rewiring. However, the detection of complex changes in regulatory connections remains a challenging task and would benefit from the development of novel nonparametric approaches. We develop a new ensemble method called BoostDiff (boosted differential regression trees) to infer a differential network discriminating between two conditions. BoostDiff builds an adaptively boosted (AdaBoost) ensemble of differential trees with respect to a target condition. To build the differential trees, we propose differential variance improvement as a novel splitting criterion. Variable importance measures derived from the resulting models are used to reflect changes in gene expression predictability and to build the output differential networks. BoostDiff outperforms existing differential network methods on simulated data evaluated in four different complexity settings. We then demonstrate the power of our approach when applied to real transcriptomics data in COVID-19, Crohn's disease, breast cancer, prostate adenocarcinoma, and stress response in Bacillus subtilis. BoostDiff identifies context-specific networks that are enriched with genes of known disease-relevant pathways and complements standard differential expression analyses. Availability and implementation: BoostDiff is available at https://github.com/scibiome/boostdiff_inference.

3.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38421266

RESUMEN

Molecular profiling techniques such as metagenomics, metatranscriptomics or metabolomics offer important insights into the functional diversity of the microbiome. In contrast, 16S rRNA gene sequencing, a widespread and cost-effective technique to measure microbial diversity, only allows for indirect estimation of microbial function. To mitigate this, tools such as PICRUSt2, Tax4Fun2, PanFP and MetGEM infer functional profiles from 16S rRNA gene sequencing data using different algorithms. Prior studies have cast doubts on the quality of these predictions, motivating us to systematically evaluate these tools using matched 16S rRNA gene sequencing, metagenomic datasets, and simulated data. Our contribution is threefold: (i) using simulated data, we investigate if technical biases could explain the discordance between inferred and expected results; (ii) considering human cohorts for type two diabetes, colorectal cancer and obesity, we test if health-related differential abundance measures of functional categories are concordant between 16S rRNA gene-inferred and metagenome-derived profiles and; (iii) since 16S rRNA gene copy number is an important confounder in functional profiles inference, we investigate if a customised copy number normalisation with the rrnDB database could improve the results. Our results show that 16S rRNA gene-based functional inference tools generally do not have the necessary sensitivity to delineate health-related functional changes in the microbiome and should thus be used with care. Furthermore, we outline important differences in the individual tools tested and offer recommendations for tool selection.


Asunto(s)
Metagenoma , Microbiota , Humanos , ARN Ribosómico 16S/genética , Genes de ARNr , Microbiota/genética , Algoritmos
4.
NAR Genom Bioinform ; 5(3): lqad081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37705830

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation. To check this hypothesis, we studied the role of miRNA target sites in both coding and non-coding regions using six cancer data sets from The Cancer Genome Atlas (TCGA) and Parkinson's disease data from PPMI. First, we predicted miRNA target sites on mRNAs from their sequence using TarPmiR. To check whether alternative splicing interferes with this regulation, we trained linear regression models to predict miRNA expression from transcript expression. Using nested models, we compared the predictive power of transcripts with miRNA target sites in the coding regions to that of transcripts without target sites. Models containing transcripts with target sites perform significantly better. We conclude that alternative splicing does interfere with miRNA regulation by skipping exons with miRNA target sites within the coding region.

5.
Bioinformatics ; 39(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37084275

RESUMEN

MOTIVATION: Cancer is one of the leading causes of death worldwide. Despite significant improvements in prevention and treatment, mortality remains high for many cancer types. Hence, innovative methods that use molecular data to stratify patients and identify biomarkers are needed. Promising biomarkers can also be inferred from competing endogenous RNA (ceRNA) networks that capture the gene-miRNA gene regulatory landscape. Thus far, the role of these biomarkers could only be studied globally but not in a sample-specific manner. To mitigate this, we introduce spongEffects, a novel method that infers subnetworks (or modules) from ceRNA networks and calculates patient- or sample-specific scores related to their regulatory activity. RESULTS: We show how spongEffects can be used for downstream interpretation and machine learning tasks such as tumor classification and for identifying subtype-specific regulatory interactions. In a concrete example of breast cancer subtype classification, we prioritize modules impacting the biology of the different subtypes. In summary, spongEffects prioritizes ceRNA modules as biomarkers and offers insights into the miRNA regulatory landscape. Notably, these module scores can be inferred from gene expression data alone and can thus be applied to cohorts where miRNA expression information is lacking. AVAILABILITY AND IMPLEMENTATION: https://bioconductor.org/packages/devel/bioc/html/SPONGE.html.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Redes Reguladoras de Genes , Neoplasias de la Mama/genética , Aprendizaje Automático , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética
6.
NAR Cancer ; 4(4): zcac030, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36267208

RESUMEN

Molecular signatures have been suggested as biomarkers to classify pancreatic ductal adenocarcinoma (PDAC) into two, three, four or five subtypes. Since the robustness of existing signatures is controversial, we performed a systematic evaluation of four established signatures for PDAC stratification across nine publicly available datasets. Clustering revealed inconsistency of subtypes across independent datasets and in some cases a different number of PDAC subgroups than in the original study, casting doubt on the actual number of existing subtypes. Next, we built sixteen classification models to investigate the ability of the signatures for tumor subtype prediction. The overall classification performance ranged from ∼35% to ∼90% accuracy, suggesting instability of the signatures. Notably, permuted subtypes and random gene sets achieved very similar performance. Cellular decomposition and functional pathway enrichment analysis revealed strong tissue-specificity of the predicted classes. Our study highlights severe limitations and inconsistencies that can be attributed to technical biases in sample preparation and tumor purity, suggesting that PDAC molecular signatures do not generalize across datasets. How stromal heterogeneity and immune compartment interplay in the diverging development of PDAC is still unclear. Therefore, a more mechanistic or a cross-platform multi-omic approach seems necessary to extract more robust and clinically exploitable insights.

7.
Nucleic Acids Res ; 50(W1): W138-W144, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580047

RESUMEN

Cancer is a heterogeneous disease characterized by unregulated cell growth and promoted by mutations in cancer driver genes some of which encode suitable drug targets. Since the distinct set of cancer driver genes can vary between and within cancer types, evidence-based selection of drugs is crucial for targeted therapy following the precision medicine paradigm. However, many putative cancer driver genes can not be targeted directly, suggesting an indirect approach that considers alternative functionally related targets in the gene interaction network. Once potential drug targets have been identified, it is essential to consider all available drugs. Since tools that offer support for systematic discovery of drug repurposing candidates in oncology are lacking, we developed CADDIE, a web application integrating six human gene-gene and four drug-gene interaction databases, information regarding cancer driver genes, cancer-type specific mutation frequencies, gene expression information, genetically related diseases, and anticancer drugs. CADDIE offers access to various network algorithms for identifying drug targets and drug repurposing candidates. It guides users from the selection of seed genes to the identification of therapeutic targets or drug candidates, making network medicine algorithms accessible for clinical research. CADDIE is available at https://exbio.wzw.tum.de/caddie/ and programmatically via a python package at https://pypi.org/project/caddiepy/.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Programas Informáticos , Oncogenes , Algoritmos , Mutación , Interacciones Farmacológicas , Reposicionamiento de Medicamentos
8.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37132521

RESUMEN

BACKGROUND: Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS: We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION: TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.


Asunto(s)
Lactancia , Factores de Transcripción , Animales , Ratones , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Indonesia , Sitios de Unión/genética , Desoxirribonucleasas/metabolismo
9.
Thromb Haemost ; 122(10): 1706-1711, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34388849

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a coagulopathy characterized by platelet activation and a hypercoagulable state with an increased incidence of cardiovascular events. The viral spike protein S has been reported to enhance thrombosis formation, stimulate platelets to release procoagulant factors, and promote the formation of platelet-leukocyte aggregates even in absence of the virus. Although SARS-CoV-2 vaccines induce spike protein overexpression to trigger SARS-CoV-2-specific immune protection, thrombocyte activity has not been investigated in this context. Here, we provide the first phenotypic platelet characterization of healthy human subjects undergoing BNT162b2 vaccination. Using mass cytometry, we analyzed the expression of constitutive transmembrane receptors, adhesion proteins, and platelet activation markers in 12 healthy donors before and at five different time points within 4 weeks after the first BNT162b2 administration. We measured platelet reactivity by stimulating thrombocyte activation with thrombin receptor-activating peptide. Activation marker expression (P-selectin, LAMP-3, LAMP-1, CD40L, and PAC-1) did not change after vaccination. All investigated constitutive transmembrane proteins showed similar expressions over time. Platelet reactivity was not altered after BNT162b2 administration. Activation marker expression was significantly lower compared with an independent cohort of mild symptomatic COVID-19 patients analyzed with the same platform. This study reveals that BNT162b2 administration does not alter platelet protein expression and reactivity.


Asunto(s)
Vacuna BNT162 , Plaquetas , COVID-19 , Anticuerpos Antivirales , Vacuna BNT162/efectos adversos , Plaquetas/metabolismo , Ligando de CD40 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Proteínas de la Membrana/metabolismo , Selectina-P/metabolismo , Receptores de Trombina/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Trends Pharmacol Sci ; 43(2): 136-150, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34895945

RESUMEN

For complex diseases, most drugs are highly ineffective, and the success rate of drug discovery is in constant decline. While low quality, reproducibility issues, and translational irrelevance of most basic and preclinical research have contributed to this, the current organ-centricity of medicine and the 'one disease-one target-one drug' dogma obstruct innovation in the most profound manner. Systems and network medicine and their therapeutic arm, network pharmacology, revolutionize how we define, diagnose, treat, and, ideally, cure diseases. Descriptive disease phenotypes are replaced by endotypes defined by causal, multitarget signaling modules that also explain respective comorbidities. Precise and effective therapeutic intervention is achieved by synergistic multicompound network pharmacology and drug repurposing, obviating the need for drug discovery and speeding up clinical translation.


Asunto(s)
Farmacología en Red , Farmacología , Descubrimiento de Drogas , Humanos , Reproducibilidad de los Resultados
11.
NAR Cancer ; 3(1): zcaa042, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34316695

RESUMEN

microRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and human diseases, including cancer. The majority of transcripts compete over a limited pool of miRNAs, giving rise to a complex network of competing endogenous RNA (ceRNA) interactions. Currently, gene-regulatory networks focus mostly on transcription factor-mediated regulation, and dedicated efforts for charting ceRNA regulatory networks are scarce. Recently, it became possible to infer ceRNA interactions genome-wide from matched gene and miRNA expression data. Here, we inferred ceRNA regulatory networks for 22 cancer types and a pan-cancer ceRNA network based on data from The Cancer Genome Atlas. To make these networks accessible to the biomedical community, we present SPONGEdb, a database offering a user-friendly web interface to browse and visualize ceRNA interactions and an application programming interface accessible by accompanying R and Python packages. SPONGEdb allows researchers to identify potent ceRNA regulators via network centrality measures and to assess their potential as cancer biomarkers through survival, cancer hallmark and gene set enrichment analysis. In summary, SPONGEdb is a feature-rich web resource supporting the community in studying ceRNA regulation within and across cancer types.

12.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33782690

RESUMEN

In network and systems medicine, active module identification methods (AMIMs) are widely used for discovering candidate molecular disease mechanisms. To this end, AMIMs combine network analysis algorithms with molecular profiling data, most commonly, by projecting gene expression data onto generic protein-protein interaction (PPI) networks. Although active module identification has led to various novel insights into complex diseases, there is increasing awareness in the field that the combination of gene expression data and PPI network is problematic because up-to-date PPI networks have a very small diameter and are subject to both technical and literature bias. In this paper, we report the results of an extensive study where we analyzed for the first time whether widely used AMIMs really benefit from using PPI networks. Our results clearly show that, except for the recently proposed AMIM DOMINO, the tested AMIMs do not produce biologically more meaningful candidate disease modules on widely used PPI networks than on random networks with the same node degrees. AMIMs hence mainly learn from the node degrees and mostly fail to exploit the biological knowledge encoded in the edges of the PPI networks. This has far-reaching consequences for the field of active module identification. In particular, we suggest that novel algorithms are needed which overcome the degree bias of most existing AMIMs and/or work with customized, context-specific networks instead of generic PPI networks.


Asunto(s)
Algoritmos , Expresión Génica , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Biología de Sistemas/métodos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fenotipo , Proteínas/genética , Proteínas/metabolismo
13.
Clin Epigenetics ; 13(1): 66, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785068

RESUMEN

Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its' very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Neoplasias/genética , Neoplasias/terapia , Sistemas de Atención de Punto , Medicina de Precisión/métodos , Epigénesis Genética , Humanos
14.
Bioinformatics ; 37(16): 2398-2404, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367514

RESUMEN

MOTIVATION: Unsupervised learning approaches are frequently used to stratify patients into clinically relevant subgroups and to identify biomarkers such as disease-associated genes. However, clustering and biclustering techniques are oblivious to the functional relationship of genes and are thus not ideally suited to pinpoint molecular mechanisms along with patient subgroups. RESULTS: We developed the network-constrained biclustering approach Biclustering Constrained by Networks (BiCoN) which (i) restricts biclusters to functionally related genes connected in molecular interaction networks and (ii) maximizes the difference in gene expression between two subgroups of patients. This allows BiCoN to simultaneously pinpoint molecular mechanisms responsible for the patient grouping. Network-constrained clustering of genes makes BiCoN more robust to noise and batch effects than typical clustering and biclustering methods. BiCoN can faithfully reproduce known disease subtypes as well as novel, clinically relevant patient subgroups, as we could demonstrate using breast and lung cancer datasets. In summary, BiCoN is a novel systems medicine tool that combines several heuristic optimization strategies for robust disease mechanism extraction. BiCoN is well-documented and freely available as a python package or a web interface. AVAILABILITY AND IMPLEMENTATION: PyPI package: https://pypi.org/project/bicon. WEB INTERFACE: https://exbio.wzw.tum.de/bicon. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

15.
Cell Rep ; 32(4): 107957, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726622

RESUMEN

Manipulating molecules that impact T cell receptor (TCR) or cytokine signaling, such as the protein tyrosine phosphatase non-receptor type 2 (PTPN2), has significant potential for advancing T cell-based immunotherapies. Nonetheless, it remains unclear how PTPN2 impacts the activation, survival, and memory formation of T cells. We find that PTPN2 deficiency renders cells in vivo and in vitro less dependent on survival-promoting cytokines, such as interleukin (IL)-2 and IL-15. Remarkably, briefly ex vivo-activated PTPN2-deficient T cells accumulate in 3- to 11-fold higher numbers following transfer into unmanipulated, antigen-free mice. Moreover, the absence of PTPN2 augments the survival of short-lived effector T cells and allows them to robustly re-expand upon secondary challenge. Importantly, we find no evidence for impaired effector function or memory formation. Mechanistically, PTPN2 deficiency causes broad changes in the expression and phosphorylation of T cell expansion and survival-associated proteins. Altogether, our data underline the therapeutic potential of targeting PTPN2 in T cell-based therapies to augment the number and survival capacity of antigen-specific T cells.


Asunto(s)
Activación de Linfocitos/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Linfocitos T/metabolismo , Animales , Proteínas Portadoras/metabolismo , Comunicación Celular , Citocinas/metabolismo , Femenino , Inmunoterapia Adoptiva/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
16.
Methods Mol Biol ; 2120: 213-222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32124322

RESUMEN

Several computational methods have been proposed to infer the cellular composition from bulk RNA-seq data of a tumor biopsy sample. Elucidating interactions in the tumor microenvironment can yield unique insights into the status of the immune system. In immuno-oncology, this information can be crucial for deciding whether the immune system of a patient can be stimulated to target the tumor. Here, we shed a light on the working principles, capabilities, and limitations of the most commonly used methods for cell-type deconvolution in immuno-oncology and offer guidelines for method selection.


Asunto(s)
Biología Computacional/métodos , Inmunoterapia , Neoplasias/terapia , Simulación por Computador , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunoterapia/métodos , Modelos Inmunológicos , Neoplasias/genética , Neoplasias/inmunología , Transcriptoma , Microambiente Tumoral
17.
Methods Mol Biol ; 2120: 223-232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32124323

RESUMEN

Since the performance of in silico approaches for estimating immune-cell fractions from bulk RNA-seq data can vary, it is often advisable to compare results of several methods. Given numerous dependencies and differences in input and output format of the various computational methods, comparative analyses can become quite complex. This motivated us to develop immunedeconv, an R package providing uniform and user-friendly access to seven state-of-the-art computational methods for deconvolution of cell-type fractions from bulk RNA-seq data. Here, we show how immunedeconv can be installed and applied to a typical dataset. First, we give an example for obtaining cell-type fractions using quanTIseq. Second, we show how dimensionless scores produced by MCP-counter can be used for cross-sample comparisons. For each of these examples, we provide R code illustrating how immunedeconv results can be summarized graphically.


Asunto(s)
Genómica/métodos , Neoplasias/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Neoplasias/inmunología
18.
Nucleic Acids Res ; 48(8): e46, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32103242

RESUMEN

DNA methylation is an epigenetic mark with important regulatory roles in cellular identity and can be quantified at base resolution using bisulfite sequencing. Most studies are limited to the average DNA methylation levels of individual CpGs and thus neglect heterogeneity within the profiled cell populations. To assess this within-sample heterogeneity (WSH) several window-based scores that quantify variability in DNA methylation in sequencing reads have been proposed. We performed the first systematic comparison of four published WSH scores based on simulated and publicly available datasets. Moreover, we propose two new scores and provide guidelines for selecting appropriate scores to address cell-type heterogeneity, cellular contamination and allele-specific methylation. Most of the measures were sensitive in detecting DNA methylation heterogeneity in these scenarios, while we detected differences in susceptibility to technical bias. Using recently published DNA methylation profiles of Ewing sarcoma samples, we show that DNA methylation heterogeneity provides information complementary to the DNA methylation level. WSH scores are powerful tools for estimating variance in DNA methylation patterns and have the potential for detecting novel disease-associated genomic loci not captured by established statistics. We provide an R-package implementing the WSH scores for integration into analysis workflows.


Asunto(s)
Metilación de ADN , Análisis de Secuencia de ADN , Humanos , Sarcoma de Ewing/genética
19.
Methods Mol Biol ; 2074: 201-213, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31583640

RESUMEN

Breast cancer is a heterogeneous disease for which various clinically relevant subtypes have been reported. These subtypes are characterized by molecular differences which direct treatment selection. The state of the art for breast cancer subtyping utilizes histochemistry or gene expression to measure a few selected markers. However, classification based on molecular pathways (rather than individual markers) is a more robust way to classify breast cancer samples into known subtypes.Here, we present PathClass, a web application that allows its users to predict breast cancer subtypes using various traditional as well as advanced methods. This includes methods based on classical gene expression panels as well as de novo pathway-based predictors. Users can predict labels for datasets in the Gene Expression Omnibus or upload their own expression profiling data.Availability: https://pathclass.compbio.sdu.dk/ .


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Biomarcadores de Tumor/metabolismo , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estimación de Kaplan-Meier
20.
Cancers (Basel) ; 11(11)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717307

RESUMEN

Hepatic lipid deposition and inflammation represent risk factors for hepatocellular carcinoma (HCC). The mRNA-binding protein tristetraprolin (TTP, gene name ZFP36) has been suggested as a tumor suppressor in several malignancies, but it increases insulin resistance. The aim of this study was to elucidate the role of TTP in hepatocarcinogenesis and HCC progression. Employing liver-specific TTP-knockout (lsTtp-KO) mice in the diethylnitrosamine (DEN) hepatocarcinogenesis model, we observed a significantly reduced tumor burden compared to wild-type animals. Upon short-term DEN treatment, modelling early inflammatory processes in hepatocarcinogenesis, lsTtp-KO mice exhibited a reduced monocyte/macrophage ratio as compared to wild-type mice. While short-term DEN strongly induced an abundance of saturated and poly-unsaturated hepatic fatty acids, lsTtp-KO mice did not show these changes. These findings suggested anti-carcinogenic actions of TTP deletion due to effects on inflammation and metabolism. Interestingly, though, investigating effects of TTP on different hallmarks of cancer suggested tumor-suppressing actions: TTP inhibited proliferation, attenuated migration, and slightly increased chemosensitivity. In line with a tumor-suppressing activity, we observed a reduced expression of several oncogenes in TTP-overexpressing cells. Accordingly, ZFP36 expression was downregulated in tumor tissues in three large human data sets. Taken together, this study suggests that hepatocytic TTP promotes hepatocarcinogenesis, while it shows tumor-suppressive actions during hepatic tumor progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA