Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Physiol ; 590(5): 1171-80, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22183728

RESUMEN

Early after-depolarization (EAD), or abnormal depolarization during the plateau phase of action potentials, is a hallmark of long-QT syndrome (LQTS). More than 13 genes have been identified as responsible for LQTS, and elevated risks for EADs may depend on genotypes, such as exercise in LQT1 vs. sudden arousal in LQT2 patients. We investigated mechanisms underlying different high-risk conditions that trigger EADs using transgenic rabbit models of LQT1 and LQT2, which lack I(Ks) and I(Kr) (slow and fast components of delayed rectifying K(+) current), respectively. Single-cell patch-clamp studies show that prolongation of action potential duration (APD) can be further enhanced by lowering extracellular potassium concentration ([K(+)](o)) from 5.4 to 3.6 mm. However, only LQT2 myocytes developed spontaneous EADs following perfusion with lower [K(+)](o), while there was no EAD formation in littermate control (LMC) or LQT1 myocytes, although APDs were also prolonged in LMC myocytes and LQT1 myocytes. Isoprenaline (ISO) prolonged APDs and triggered EADs in LQT1 myocytes in the presence of lower [K(+)](o). In contrast, continuous ISO perfusion diminished APD prolongation and reduced the incidence of EADs in LQT2 myocytes. These different effects of ISO on LQT1 and LQT2 were verified by optical mapping of the whole heart, suggesting that ISO-induced EADs are genotype specific. Further voltage-clamp studies revealed that ISO increases L-type calcium current (I(Ca)) faster than I(Ks) (time constant 9.2 s for I(Ca) and 43.6 s for I(Ks)), and computer simulation demonstrated a high-risk window of EADs in LQT2 during ISO perfusion owing to mismatch in the time courses of I(Ca) and I(Ks), which may explain why a sympathetic surge rather than high sympathetic tone can be an effective trigger of EADs in LQT2 perfused hearts. In summary, EAD formation is genotype specific, such that EADs can be elicited in LQT2 myocytes simply by lowering [K(+)](o), while LQT1 myocytes require sympathetic stimulation. Slower activation of I(Ks) than of I(Ca) by ISO may explain why different sympathetic modes, i.e. sympathetic surge vs. high sympathetic tone, are associated with polymorphic ventricular tachycardia in LQTS patients.


Asunto(s)
Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Animales Modificados Genéticamente , Calcio/fisiología , Simulación por Computador , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Técnicas In Vitro , Isoproterenol/farmacología , Canal de Potasio KCNQ1/genética , Modelos Biológicos , Mutación , Potasio/fisiología , Conejos
2.
Am J Physiol Heart Circ Physiol ; 294(3): H1335-47, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18192223

RESUMEN

In contrast to the other heterotrimeric GTP-binding proteins (G proteins) Gs and Gi, the functional role of G o is still poorly defined. To investigate the role of G alpha o in the heart, we generated transgenic mice with cardiac-specific expression of a constitutively active form of G alpha o1* (G alpha o*), the predominant G alpha o isoform in the heart. G alpha o expression was increased 3- to 15-fold in mice from 5 independent lines, all of which had a normal life span and no gross cardiac morphological abnormalities. We demonstrate enhanced contractile function in G alpha o* transgenic mice in vivo, along with increased L-type Ca2+ channel current density, calcium transients, and cell shortening in ventricular G alpha o*-expressing myocytes compared with wild-type controls. These changes were evident at baseline and maintained after isoproterenol stimulation. Expression levels of all major Ca2+ handling proteins were largely unchanged, except for a modest reduction in Na+/Ca2+ exchanger in transgenic ventricles. In contrast, phosphorylation of the ryanodine receptor and phospholamban at known PKA sites was increased 1.6- and 1.9-fold, respectively, in G alpha o* ventricles. Density and affinity of beta-adrenoceptors, cAMP levels, and PKA activity were comparable in G alpha o* and wild-type myocytes, but protein phosphatase 1 activity was reduced upon G alpha o* expression, particularly in the vicinity of the ryanodine receptor. We conclude that G alpha o* exerts a positive effect on Ca2+ cycling and contractile function. Alterations in protein phosphatase 1 activity rather than PKA-mediated phosphorylation might be involved in hyperphosphorylation of key Ca2+ handling proteins in hearts with constitutive G alpha o activation.


Asunto(s)
Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/biosíntesis , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Citoesqueleto de Actina/fisiología , Infecciones por Adenoviridae/patología , Agonistas Adrenérgicos beta/farmacología , Animales , Animales Modificados Genéticamente , Northern Blotting , Western Blotting , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/fisiología , Separación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocromos c/biosíntesis , Isoproterenol/farmacología , Ratones , Miocitos Cardíacos/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/fisiología
3.
Mol Biol Cell ; 17(1): 146-54, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16251351

RESUMEN

KCa3.1 is an intermediate conductance Ca2+-activated K+ channel that is expressed predominantly in hematopoietic cells, smooth muscle cells, and epithelia where it functions to regulate membrane potential, Ca2+ influx, cell volume, and chloride secretion. We recently found that the KCa3.1 channel also specifically requires phosphatidylinositol-3 phosphate [PI(3)P] for channel activity and is inhibited by myotubularin-related protein 6 (MTMR6), a PI(3)P phosphatase. We now show that PI(3)P indirectly activates KCa3.1. Unlike KCa3.1 channels, the related KCa2.1, KCa2.2, or KCa2.3 channels do not require PI(3)P for activity, suggesting that the KCa3.1 channel has evolved a unique means of regulation that is critical for its biological function. By making chimeric channels between KCa3.1 and KCa2.3, we identified a stretch of 14 amino acids in the carboxy-terminal calmodulin binding domain of KCa3.1 that is sufficient to confer regulation of KCa2.3 by PI(3)P. However, mutation of a single potential phosphorylation site in these 14 amino acids did not affect channel activity. These data together suggest that PI(3)P and these 14 amino acids regulate KCa3.1 channel activity by recruiting an as yet to be defined regulatory subunit that is required for Ca2+ gating of KCa3.1.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/química , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Membrana Celular/metabolismo , Secuencia Conservada , Cricetinae , Citosol , Electrofisiología , Activación Enzimática , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Datos de Secuencia Molecular , Mutación/genética , Técnicas de Placa-Clamp , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Monoéster Fosfórico Hidrolasas , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras , Ratas , Alineación de Secuencia
4.
Mol Cell Biol ; 25(9): 3630-8, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831468

RESUMEN

Myotubularins (MTMs) belong to a large subfamily of phosphatases that dephosphorylate the 3' position of phosphatidylinositol 3-phosphate [PI(3)P] and PI(3,5)P(2). MTM1 is mutated in X-linked myotubular myopathy, and MTMR2 and MTMR13 are mutated in Charcot-Marie-Tooth syndrome. However, little is known about the general mechanism(s) whereby MTMs are regulated or the specific biological processes regulated by the different MTMs. We identified a Ca(2+)-activated K channel, K(Ca)3.1 (also known as KCa4, IKCa1, hIK1, or SK4), that specifically interacts with the MTMR6 subfamily of MTMs via coiled coil (CC) domains on both proteins. Overexpression of MTMR6 inhibited K(Ca)3.1 channel activity, and this inhibition required MTMR6's CC and phosphatase domains. This inhibition is specific; MTM1, a closely related MTM, did not inhibit K(Ca)3.1. However, a chimeric MTM1 in which the MTM1 CC domain was swapped for the MTMR6 CC domain inhibited K(Ca)3.1, indicating that MTM CC domains are sufficient to confer target specificity. K(Ca)3.1 was also inhibited by the PI(3) kinase inhibitors LY294002 and wortmannin, and this inhibition was rescued by the addition of PI(3)P, but not other phosphoinositides, to the patch pipette solution. PI(3)P also rescued the inhibition of K(Ca)3.1 by MTMR6 overexpression. These data, when taken together, indicate that K(Ca)3.1 is regulated by PI(3)P and that MTMR6 inhibits K(Ca)3.1 by dephosphorylating the 3' position of PI(3)P, possibly leading to decreased PI(3)P in lipid microdomains adjacent to K(Ca)3.1. K(Ca)3.1 plays important roles in controlling proliferation by T cells, vascular smooth muscle cells, and some cancer cell lines. Thus, our findings not only provide unique insights into the regulation of K(Ca)3.1 channel activity but also raise the possibility that MTMs play important roles in the negative regulation of T cells and in conditions associated with pathological cell proliferation, such as cancer and atherosclerosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Monoéster Fosfórico Hidrolasas/fisiología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Androstadienos/farmacología , Animales , Células CHO , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromonas/farmacología , Cricetinae , Biblioteca de Genes , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Potenciales de la Membrana/fisiología , Morfolinas/farmacología , Técnicas de Placa-Clamp , Fosfatidilinositoles/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA