Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Rep ; 42(9): 113030, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632751

RESUMEN

Neural crest cells are multipotent cells that delaminate from the neuroepithelium, migrating throughout the embryo. Aberrant migration causes developmental defects. Animal models are improving our understanding of neural crest anomalies, but in vivo migration behaviors are poorly understood. Here, we demonstrate that murine neural crest cells display actin-based lamellipodia and filopodia in vivo. Using neural crest-specific knockouts or inhibitors, we show that the serine-threonine kinase glycogen synthase kinase-3 (GSK3) and the cytoskeletal regulator lamellipodin (Lpd) are required for lamellipodia formation while preventing focal adhesion maturation. Lpd is a substrate of GSK3, and phosphorylation of Lpd favors interactions with the Scar/WAVE complex (lamellipodia formation) at the expense of VASP and Mena interactions (adhesion maturation and filopodia formation). This improved understanding of cytoskeletal regulation in mammalian neural crest migration has general implications for neural crest anomalies and cancer.


Asunto(s)
Adhesiones Focales , Glucógeno Sintasa Quinasa 3 , Cresta Neural , Animales , Ratones , Movimiento Celular , Mamíferos , Cresta Neural/citología , Seudópodos
2.
J Anat ; 243(1): 90-99, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36899483

RESUMEN

The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.


Asunto(s)
Proteínas Hedgehog , Osteogénesis , Ratones , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas Hedgehog/metabolismo , Mandíbula/metabolismo , Cráneo , Cresta Neural
3.
Development ; 149(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905010

RESUMEN

Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.


Asunto(s)
Cresta Neural , Neuroblastoma , Biomarcadores , Diferenciación Celular , Niño , Preescolar , Humanos , Células Madre Neoplásicas/patología , Neuroblastoma/genética , Neuroblastoma/patología , Neurogénesis
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769149

RESUMEN

Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.


Asunto(s)
Quinasa de Linfoma Anaplásico/metabolismo , Cresta Neural/patología , Neuroblastoma/patología , Quinasa de Linfoma Anaplásico/análisis , Quinasa de Linfoma Anaplásico/genética , Animales , Niño , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Humanos , Cresta Neural/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Mapas de Interacción de Proteínas
5.
Gene Expr Patterns ; 40: 119183, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34020009

RESUMEN

Neuroblastoma is a neural crest-derived paediatric cancer that is the most common and deadly solid extracranial tumour of childhood. It arises when neural crest cells fail to follow their differentiation program to give rise to cells of the sympathoadrenal lineage. These undifferentiated cells can proliferate and migrate, forming tumours mostly found associated with the adrenal glands. Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) are linked to high-risk cases, where extensive therapy is ineffective. However, the role of ALK in embryonic development, downstream signal transduction and in metastatic transformation of the neural crest is poorly understood. Here, we demonstrate high conservation of the ALK protein sequences among vertebrates. We then examine alk mRNA expression in the frog models Xenopus laevis and Xenopus tropicalis. Using in situ hybridisation of Xenopus embryos, we show that alk is expressed in neural crest domains throughout development, suggesting a possible role in neuroblastoma initiation. Lastly, RT-qPCR analyses show high levels of alk expression at tadpole stages. Collectively, these data may begin to elucidate how alk functions in neural crest cells and how its deregulation can result in tumorigenesis.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Cresta Neural/metabolismo , Proteínas de Xenopus/genética , Quinasa de Linfoma Anaplásico/metabolismo , Animales , Cresta Neural/embriología , Proteínas de Xenopus/metabolismo , Xenopus laevis
6.
7.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32196547

RESUMEN

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Asunto(s)
Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Anomalías Craneofaciales/genética , Ectropión/genética , Cardiopatías Congénitas/genética , Anomalías Dentarias/genética , Adolescente , Adulto , Animales , Anodoncia/diagnóstico por imagen , Anodoncia/genética , Anodoncia/fisiopatología , Niño , Preescolar , Labio Leporino/diagnóstico por imagen , Labio Leporino/fisiopatología , Fisura del Paladar/diagnóstico por imagen , Fisura del Paladar/fisiopatología , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/fisiopatología , Modelos Animales de Enfermedad , Ectropión/diagnóstico por imagen , Ectropión/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Ratones , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/fisiopatología , Xenopus , Adulto Joven , Catenina delta
8.
Development ; 146(21)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719045

RESUMEN

The tongue is a highly specialised muscular organ with a complex anatomy required for normal function. We have utilised multiple genetic approaches to investigate local temporospatial requirements for sonic hedgehog (SHH) signalling during tongue development. Mice lacking a Shh cis-enhancer, MFCS4 (ShhMFCS4/-), with reduced SHH in dorsal tongue epithelium have perturbed lingual septum tendon formation and disrupted intrinsic muscle patterning, with these defects reproduced following global Shh deletion from E10.5 in pCag-CreERTM; Shhflox/flox embryos. SHH responsiveness was diminished in local cranial neural crest cell (CNCC) populations in both mutants, with SHH targeting these cells through the primary cilium. CNCC-specific deletion of orofaciodigital syndrome 1 (Ofd1), which encodes a ciliary protein, in Wnt1-Cre; Ofdfl/Y mice led to a complete loss of normal myotube arrangement and hypoglossia. In contrast, mesoderm-specific deletion of Ofd1 in Mesp1-Cre; Ofdfl/Y embryos resulted in normal intrinsic muscle arrangement. Collectively, these findings suggest key temporospatial requirements for local SHH signalling in tongue development (specifically, lingual tendon differentiation and intrinsic muscle patterning through signalling to CNCCs) and provide further mechanistic insight into the tongue anomalies seen in patients with disrupted hedgehog signalling.


Asunto(s)
Tipificación del Cuerpo , Proteínas Hedgehog/metabolismo , Cresta Neural/citología , Transducción de Señal , Lengua/embriología , Alelos , Animales , Proliferación Celular , Elementos de Facilitación Genéticos , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Heterocigoto , Ligandos , Mesodermo/metabolismo , Ratones , Morfogénesis/genética , Fenotipo , Proteínas/metabolismo , Tendones/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Proteína Wnt1/metabolismo
9.
Biomed Microdevices ; 21(2): 44, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30963305

RESUMEN

In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Animales , Adhesión Celular , Dimetilpolisiloxanos/química , Células Madre Embrionarias/citología , Fibronectinas/química , Ratones , Imagen Molecular , Nylons/química , Propilaminas/química , Silanos/química
10.
J Exp Neurosci ; 12: 1179069518792499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127638

RESUMEN

Neuroblastoma is one of the most common and deadly childhood cancers. Neuroblastoma arises from transformed cells of the neural crest lineage. Outcomes of the disease vary greatly, ranging from spontaneous regression to aggressive metastases. While this variability may reflect the inherent migratory capabilities and multipotency of neural crest cells, there have been few direct comparisons between neuroblastoma and embryonic neural crest cells, in part because of the limited in vivo accessibility of the mammalian neural crest lineage. Our recent studies demonstrate a novel link between anaplastic lymphoma kinase (ALK) and glycogen synthase kinase 3 (GSK3). Our work suggests that ALK-dependent regulation of GSK3 via tyrosine phosphorylation may alter the substrate specificity of GSK3, thus regulating cytoskeletal dynamics in migrating neural crest cells.

11.
Nat Commun ; 9(1): 1126, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555900

RESUMEN

Neural crest migration is critical to its physiological function. Mechanisms controlling mammalian neural crest migration are comparatively unknown, due to difficulties accessing this cell population in vivo. Here we report requirements of glycogen synthase kinase 3 (GSK3) in regulating the neural crest in Xenopus and mouse models. We demonstrate that GSK3 is tyrosine phosphorylated (pY) in mouse neural crest cells and that loss of GSK3 leads to increased pFAK and misregulation of Rac1 and lamellipodin, key regulators of cell migration. Genetic reduction of GSK3 results in failure of migration. We find that pY-GSK3 phosphorylation depends on anaplastic lymphoma kinase (ALK), a protein associated with neuroblastoma. Consistent with this, neuroblastoma cells with increased ALK activity express high levels of pY-GSK3, and blockade of GSK3 or ALK can affect migration of these cells. Altogether, this work identifies a role for GSK3 in cell migration during neural crest development and cancer.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Cresta Neural/citología , Cresta Neural/enzimología , Proteínas de Xenopus/química , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/metabolismo , Animales , Línea Celular Tumoral , Linaje de la Célula , Movimiento Celular/fisiología , Femenino , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/deficiencia , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/deficiencia , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Noqueados , Cresta Neural/embriología , Neuroblastoma/enzimología , Fosforilación , Embarazo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo
12.
Dev Cell ; 44(2): 248-260.e4, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29290587

RESUMEN

Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of ß-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating ß-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of ß-catenin independently of both ß-catenin cytoplasmic stabilization and the importin ß1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of ß-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.


Asunto(s)
Tipificación del Cuerpo , Núcleo Celular/metabolismo , Vía de Señalización Wnt , Proteínas de Xenopus/fisiología , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Factores de Intercambio de Guanina Nucleótido/fisiología , Xenopus
14.
Dev Biol ; 417(1): 4-10, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27395007

RESUMEN

The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies.


Asunto(s)
Anomalías Craneofaciales/embriología , Hueso Frontal/anomalías , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción de Tipo Kruppel/genética , Proteínas del Tejido Nervioso/genética , Cresta Neural/embriología , Hueso Parietal/anomalías , Cráneo/anomalías , Animales , Ciliopatías/genética , Anomalías Craneofaciales/genética , Proteínas del Citoesqueleto , Factor 8 de Crecimiento de Fibroblastos/genética , Hueso Frontal/embriología , Dosificación de Gen/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Ratones , Ratones Transgénicos , Morfogénesis , Hueso Parietal/embriología , Transducción de Señal/genética , Proteína Gli3 con Dedos de Zinc
15.
Tissue Eng Part A ; 22(9-10): 707-20, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27036931

RESUMEN

Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFß) signaling as a potential pathway for pharmacological modulation in vivo. We demonstrate that inhibition of TGFß signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFß signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.


Asunto(s)
Benzamidas/farmacología , Regeneración Ósea/efectos de los fármacos , Dioxoles/farmacología , Osteoblastos , Transducción de Señal/efectos de los fármacos , Cráneo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Proteína Morfogenética Ósea 2/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Cráneo/lesiones , Cráneo/metabolismo , Cráneo/patología , Proteína smad6/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo
16.
Dev Biol ; 396(1): 1-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25300580

RESUMEN

To feed or breathe, the oral opening must connect with the gut. The foregut and oral tissues converge at the primary mouth, forming the buccopharyngeal membrane (BPM), a bilayer epithelium. Failure to form the opening between gut and mouth has significant ramifications, and many craniofacial disorders have been associated with defects in this process. Oral perforation is characterized by dissolution of the BPM, but little is known about this process. In humans, failure to form a continuous mouth opening is associated with mutations in Hedgehog (Hh) pathway members; however, the role of Hh in primary mouth development is untested. Here, we show, using Xenopus, that Hh signaling is necessary and sufficient to initiate mouth formation, and that Hh activation is required in a dose-dependent fashion to determine the size of the mouth. This activity lies upstream of the previously demonstrated role for Wnt signal inhibition in oral perforation. We then turn to mouse mutants to establish that SHH and Gli3 are indeed necessary for mammalian mouth development. Our data suggest that Hh-mediated BPM persistence may underlie oral defects in human craniofacial syndromes.


Asunto(s)
Proteínas Hedgehog/metabolismo , Boca/embriología , Animales , Membrana Basal/embriología , Epitelio/embriología , Fibronectinas/metabolismo , Tracto Gastrointestinal/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Morfolinas/química , Boca/fisiología , Proteínas del Tejido Nervioso/genética , Purinas/química , Proteínas Represoras/genética , Transducción de Señal , Factores de Tiempo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis , Proteína Gli3 con Dedos de Zinc
17.
Dev Cell ; 25(6): 623-35, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23806618

RESUMEN

Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Anomalías Craneofaciales/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Síndromes Orofaciodigitales/genética , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patología , Movimiento Celular/fisiología , Trastornos de la Motilidad Ciliar/patología , Anomalías Craneofaciales/patología , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Maxilar/anomalías , Ratones , Ratones Mutantes , Cresta Neural/anomalías , Síndromes Orofaciodigitales/patología , Hueso Paladar/anomalías , Fenotipo , Proteína con Dedos de Zinc GLI1
18.
Rare Dis ; 1: e27109, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25003013

RESUMEN

Congenital skeletal anomalies are rare disorders, with a subset affecting both the cranial and appendicular skeleton. Two categories, craniosynostosis syndromes and chondrodysplasias, frequently result from aberrant regulation of the fibroblast growth factor (FGF) signaling pathway. Our recent work has implicated FGF signaling in a third category: ciliopathic skeletal dysplasias. In this work, we have used mouse mutants in two ciliopathy genes, Fuzzy (Fuz) and orofacial digital syndrome-1 (Ofd-1), to demonstrate increase in Fgf8 gene expression during critical stages of embryogenesis. While the mechanisms underlying FGF dysregulation differ in the different syndromes, our data raise the possibility that convergence on FGF signal transduction may underlie a wide range of skeletal anomalies. Here, we provide additional evidence of the skeletal phenotypes from the Fuz mouse model and highlight similarities between human ciliopathies and FGF-related syndromes.

19.
Science ; 336(6077): 86-90, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22442384

RESUMEN

Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.


Asunto(s)
Células Dendríticas/citología , Células Madre Hematopoyéticas/citología , Macrófagos/citología , Células Mieloides/citología , Mielopoyesis , Proteínas Proto-Oncogénicas c-myb/metabolismo , Saco Vitelino/citología , Animales , Linaje de la Célula , Proliferación Celular , Embrión de Pollo , Células Dendríticas/fisiología , Embrión de Mamíferos/citología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes myb , Células Madre Hematopoyéticas/fisiología , Macrófagos del Hígado/citología , Macrófagos del Hígado/fisiología , Células de Langerhans/citología , Células de Langerhans/fisiología , Hígado/embriología , Macrófagos/fisiología , Ratones , Microglía/citología , Microglía/fisiología , Células Mieloides/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(49): 21040-5, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21078992

RESUMEN

Olfactory ensheathing cells (OECs) are a unique class of glial cells with exceptional translational potential because of their ability to support axon regeneration in the central nervous system. Although OECs are similar in many ways to immature and nonmyelinating Schwann cells, and can myelinate large-diameter axons indistinguishably from myelination by Schwann cells, current dogma holds that OECs arise from the olfactory epithelium. Here, using fate-mapping techniques in chicken embryos and genetic lineage tracing in mice, we show that OECs in fact originate from the neural crest and hence share a common developmental heritage with Schwann cells. This explains the similarities between OECs and Schwann cells and overturns the existing dogma on the developmental origin of OECs. Because neural crest stem cells persist in adult tissue, including skin and hair follicles, our results also raise the possibility that patient-derived neural crest stem cells could in the future provide an abundant and accessible source of autologous OECs for cell transplantation therapy for the injured central nervous system.


Asunto(s)
Linaje de la Célula , Cresta Neural/citología , Neuroglía/citología , Mucosa Olfatoria/citología , Animales , Trasplante de Células , Embrión de Pollo , Técnicas Citológicas , Humanos , Ratones , Medicina Regenerativa/métodos , Células de Schwann
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA