Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Rheum Dis ; 27(8): e15282, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091178

RESUMEN

OBJECTIVE: To investigate the impact of IGJ on the proliferation, inflammation, and motility of rheumatoid arthritis (RA) fibroblast-like synoviocytes and elucidate the underlying mechanism. METHODS: The expression of IGJ RA fibroblast-like synoviocytes was assessed using immunoblot and qPCR. Cell growth was evaluated using CCK-8 and FCM assays. The effects on inflammatory response were determined by ELISA and immunoblot assays. Cell motility was assessed using transwell and immunoblot assays. The mechanism was further confirmed using immunoblot assays. RESULTS: IGJ expression was found to be elevated in fibroid synovial cells of RA. IGJ ablation inhibited the growth of MH7A cells and suppressed the inflammatory response. Knockdown of IGJ also blocked cell motility. Mechanically, the knockdown of IGJ suppressed the NF-κB axis in MH7A cells. CONCLUSION: IGJ suppresses RA in fibroblast-like synoviocytes via NF-κB pathway.


Asunto(s)
Artritis Reumatoide , Movimiento Celular , Proliferación Celular , Fibroblastos , FN-kappa B , Transducción de Señal , Sinoviocitos , Humanos , Sinoviocitos/metabolismo , Sinoviocitos/patología , Sinoviocitos/efectos de los fármacos , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , FN-kappa B/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Células Cultivadas , Línea Celular , Hialuronoglucosaminidasa
2.
J Exp Bot ; 75(10): 3026-3039, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38318854

RESUMEN

Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/microbiología , Vitis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
3.
Plants (Basel) ; 11(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736691

RESUMEN

Methyl jasmonate (MeJA) plays a vital role in plant disease resistance and also induces the expression of disease resistance genes in plants. In this study, a transcriptome analysis was performed on grapevine leaves after 12, 24 and 48 h of MeJA-100 µM treatment. A total of 1242 differentially expressed genes (DEGs) were identified from the transcriptome data, and the analysis of the DEGs showed that genes related to phytohormone signal transduction, jasmonic acid-mediated defense, Mitogen-activated protein kinase (MAPK), and flavonoid biosynthetic pathways were upregulated. As Pathogenesis-related gene 1 (PR1) is an important marker gene in plant defense also upregulated by MeJA treatment in RNA-seq data, the VvPR1 gene was selected for a promoter analysis with ß-glucuronidase (GUS) through transient expression in tobacco leaves against abiotic stress. The results showed that the region from -1837 bp to -558 bp of the VvPR1 promoter is the key region in response to hormone and wound stress. In this study, we extended the available knowledge about induced defense by MeJA in a grapevine species that is susceptible to different diseases and identified the molecular mechanisms by which this defense might be mediated.

4.
Arch Biochem Biophys ; 705: 108919, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33992597

RESUMEN

Baicalin is a traditional Chinese herb purified from the root of Scutellaria baicalensis Georgi. In this study, we further analyzed the molecular mechanism behind the anti-tumor activity of Baicalin in colorectal cancer (CRC). The establishment of circular RNA (circRNA)/microRNA (miRNA)/messenger RNA (mRNA) axis was predicted by bioinformatic databases and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Baicalin dose-dependently reduced the expression of circRNA myosin heavy chain 9 (circMYH9) in CRC cells. Baicalin exposure suppressed the malignant phenotypes of CRC cells, which were largely reversed by the overexpression of circMYH9. CircMYH9 functioned as a molecular sponge for miR-761. CircMYH9 overexpression protected CRC cells from Baicalin-induced injury partly through down-regulating miR-761. MiR-761 interacted with the 3' untranslated region (3' UTR) of hepatoma-derived growth factor (HDGF) mRNA. CircMYH9 up-regulated HDGF expression partly through sponging miR-761 in CRC cells. MiR-761 silencing counteracted the anti-tumor activity of Baicalin partly through up-regulating HDGF in CRC cells. Baicalin suppresses xenograft tumor growth in vivo, and this suppressive effect was partly reversed by the overexpression of circMYH9. In conclusion, Baicalin exhibited an anti-tumor activity in CRC cells partly through down-regulating circMYH9 and HDGF and up-regulating miR-761.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/patología , Flavonoides/farmacología , Fenotipo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Humanos , MicroARNs/genética
5.
Diagn Pathol ; 16(1): 47, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030715

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the third normal malignancy worldwide. Taurine-upregulated gene 1 (TUG1), a member of long noncoding RNAs (lncRNAs), has been reported to be involved in various cancers. However, the mechanism underlying TUG1 in the progression of CRC remains unclear. METHODS: The expression of TUG1, microRNA-542-3p (miR-542-3p), and tribbles homolog 2 (TRIB2) in CRC tissues and cells (LoVo and HCT116) were detected by quantitative real-time PCR (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), transwell and flow cytometry assays were employed to evaluate the effects of TUG1 in CRC cells. The interaction between miR-542-3p and TUG1 or TRIB2 were verified by dual-luciferase reporter assay. A xenograft tumor model in nude mice was established to investigate the biological role of TUG1 in CRC in vivo. RESULTS: TUG1 was increased in CRC tissues and cells (LoVo and HCT116) in contrast with adjacent normal tissues and normal intestinal mucous cells (CCC-HIE-2). Downregulation of TUG1 or TRIB2 suppressed the proliferation, migration, invasion, and induced apoptosis in CRC cells. And knockdown of TUG1 repressed tumor growth in vivo. Besides, overexpression of TRIB2 reversed the effects of TUG1 depletion on the progression of CRC. Meanwhile, TUG1 interacted with miR-542-3p and TRIB2 was a target of miR-542-3p. Furthermore, miR-542-3p knockdown or TRIB2 overexpression partly reversed the suppression effect of TUG1 depletion on the Wnt/ß-catenin pathway. CONCLUSIONS: TUG1 served as a tumor promoter, impeded the progression of CRC by miR-542-3p/TRIB2 axis to inactivate of Wnt/ß-catenin pathway, which providing a novel target for CRC treatment.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Neoplasias Colorrectales/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Vía de Señalización Wnt , Animales , Apoptosis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , ARN Largo no Codificante/genética , Carga Tumoral
6.
Cancer Cell Int ; 21(1): 153, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663510

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. METHODS: 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. RESULTS: The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3' untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. CONCLUSION: Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.

7.
Research (Wash D C) ; 2020: 7949037, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123683

RESUMEN

Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.

8.
Biomed Res Int ; 2020: 7647181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015178

RESUMEN

BACKGROUND: CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. OBJECTIVE: The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). RESULTS: In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. CONCLUSION: The data suggested that increased CD147 level could be a biomarker of IBD in children.


Asunto(s)
Basigina/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Basigina/sangre , Niño , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino
9.
Biomed Res Int ; 2020: 5341247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714980

RESUMEN

BACKGROUND: Pyroptosis, a novel form of inflammatory programmed cell death, was recently found to be a cause of mucosal barrier defect. In our pervious study, CD147 expression was documented to increase in intestinal tissue of inflammatory bowel disease (IBD). OBJECTIVE: The aim of this study was to determine the function of serum CD147 in pyroptosis. METHODS: The study group consisted of 96 cases. The centration of CD147, IL-1ß, and IL-18 levels in serum was assessed by ELISA. Real-time PCR and WB were performed to analyze the effect of CD147 on pyroptosis. RESULTS: In this study, our results showed that CD147 induced cell pyroptosis in intestinal epithelial cells (IECs) by enhancement of IL-1ß and IL-18 expression and secretion in IECs, which is attributed to activation of inflammasomes, including caspase-1 and GSDMD as well as GSDME, leading to aggregate inflammatory reaction. Mechanically, CD147 promoted phosphorylation of NF-κB p65 in IECs, while inhibition of NF-κB activity by the NF-κB inhibitor BAY11-7082 reversed the effect of CD147 on IL-1ß and IL-18 secretion. Most importantly, serum CD147 level is slightly clinically correlated with IL-1ß, but not IL-18 level. CONCLUSION: These findings revealed a critical role of CD147 in the patients with IBD, suggesting that blockade of CD147 may be a novel therapeutic strategy for the patients with IBD.


Asunto(s)
Basigina/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , FN-kappa B/metabolismo , Piroptosis , Basigina/sangre , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Piroptosis/genética , Transducción de Señal/genética
10.
Biol Res ; 53(1): 12, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209121

RESUMEN

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Asunto(s)
Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/metabolismo , MicroARNs/metabolismo , Animales , Células CACO-2/citología , Bovinos , Células Cultivadas , Claudinas/metabolismo , Biología Computacional , Exosomas/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Ocludina/metabolismo , Permeabilidad , Análisis de Matrices Tisulares , Proteína de la Zonula Occludens-1/metabolismo
11.
Front Microbiol ; 11: 599150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505371

RESUMEN

Grape white rot caused by Coniella diplodiella (Speg.) affects the production and quality of grapevine in China and other grapevine-growing countries. Despite the importance of C. diplodiella as a serious disease-causing agent in grape, the genome information and molecular mechanisms underlying its pathogenicity are poorly understood. To bridge this gap, 40.93 Mbp of C. diplodiella strain WR01 was de novo assembled. A total of 9,403 putative protein-coding genes were predicted. Among these, 608 and 248 genes are potentially secreted proteins and candidate effector proteins (CEPs), respectively. Additionally, the transcriptome of C. diplodiella was analyzed after feeding with crude grapevine leaf homogenates, which reveals the transcriptional expression of 9,115 genes. Gene ontology enrichment analysis indicated that the highly enriched genes are related with carbohydrate metabolism and secondary metabolite synthesis. Forty-three putative effectors were cloned from C. diplodiella, and applied for further functional analysis. Among them, one protein exhibited strong effect in the suppression of BCL2-associated X (BAX)-induced hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. This work facilitates valuable genetic basis for understanding the molecular mechanism underlying C. diplodiella-grapevine interaction.

12.
Biol. Res ; 53: 12, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1100918

RESUMEN

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (lECs) to investigate the communication between MCs and lECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into lECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Asunto(s)
Humanos , Animales , Bovinos , MicroARNs/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/metabolismo , Permeabilidad , Enfermedades Inflamatorias del Intestino/metabolismo , Células Cultivadas , Células CACO-2/citología , Biología Computacional , Análisis de Matrices Tisulares , Exosomas/metabolismo , Claudinas/metabolismo , Ocludina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
13.
Cell Prolif ; 52(6): e12673, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31418947

RESUMEN

OBJECTIVE: Inflammatory bowel disease (IBD) is a disorder intestinal inflammation and impaired barrier function, associated with increased epithelial expression of monocarboxylate transporter 4 (MCT4). However, the specific non-metabolic function and clinical relevance of MCT4 in IBD remain to be fully elucidated. METHODS: Lentivirus-mediated overexpression of MCT4 was used to assess the role of MCT4 in transcriptionally regulating ZO-1 and IL-6 expression by luciferase assays, WB and ChIP. IP was used to analyse the effect of MCT4 on the interaction NF-κB-CBP or CREB-CBP, and these MCT4-mediated effects were confirmed in vivo assay. RESULTS: We showed that ectopic expression of MCT4 inhibited ZO-1 expression, while increased pro-inflammatory factors expression, leading to destroy intestinal epithelial barrier function in vitro and in vivo. Mechanistically, MCT4 contributed NF-κB p65 nuclear translocation and increased the binding of NF-κB p65 to the promoter of IL-6, which is attributed to MCT4 enhanced NF-κB-CBP interaction and dissolved CREB-CBP complex, resulting in reduction of CREB activity and CREB-mediated ZO-1 expression. In addition, treatment of experimental colitis with MCT4 inhibitor α-cyano-4-hydroxycinnamate (CHC) ameliorated mucosal intestinal barrier function, which was due to attenuation of pro-inflammation factors expression and enhancement of ZO-1 expression. CONCLUSION: These findings suggested a novel role of MCT4 in controlling development of IBD and provided evidence for potential targets of IBD.


Asunto(s)
Epitelio/efectos de los fármacos , Interleucina-6/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Células CACO-2 , Colon/metabolismo , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Transcripción ReIA/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Proteína de la Zonula Occludens-1/efectos de los fármacos
14.
Mol Cancer ; 17(1): 176, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30572883

RESUMEN

BACKGROUND: Although the genetic spectrum of human colorectal cancer (CRC) is mainly characterized by APC, KRAS and TP53 mutations, driver genes in tumor initiation have not been conclusively demonstrated. In this study, we aimed to identify novel markers for CRC. METHODS: We performed exome analysis of sporadic colorectal cancer (sCRC) coding regions to screen loss of function (LoF) mutation genes, and carried out systems-level approaches to confirm top rank gene in this study. RESULTS: We identified loss of BMP5 is an early event in CRC. Deep sequencing identified BMP5 was mutated in 7.7% (8/104) of sCRC samples, with 37.5% truncating mutation frequency. Notably, BMP5 negative expression and its prognostic value is uniquely significant in sCRC but not in other tumor types. Furthermore, BMP5 expression was positively correlated with E-cadherin in CRC patients and its dysregulation play a vital role in epithelial-mesenchymal transition (EMT), thus triggering tumor initiation and development. RNA sequencing identified, independent of BMP/Smads pathway, BMP5 signaled though Jak-Stat pathways to inhibit the activation of oncogene EPSTI1. CONCLUSIONS: Our result support a novel concept that the importance of BMP5 in sCRC. The tumor suppressor role of BMP5 highlights its crucial role in CRC initiation and development.


Asunto(s)
Proteína Morfogenética Ósea 5/genética , Neoplasias Colorrectales/genética , Proteínas Supresoras de Tumor/genética , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica/métodos , Células HCT116 , Células HT29 , Humanos , Mutación/genética , Transducción de Señal , Proteínas Smad/genética , Transcriptoma
15.
Oncotarget ; 7(15): 19813-23, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27009808

RESUMEN

Ras-association domain family protein 6 (RASSF6) is a member of tumor suppressor RASSFs family with a wide range of function from RAS interaction, Hippo signaling involvement to cell cycle and apoptosis regulation. RASSF6 is reported inactivated in various types of cancer. However, whether RASSF6 is associated with colorectal cancer and the underlying mechanisms have yet to be investigated. In our previous exome sequencing study, we found a somatic loss-of-function (LoF) mutation in RASSF6 in one sporadic colorectal cancer (sCRC) patient, and two missense mutations in deep sequencing group of sCRC samples, implying the possibility that RASSF6 may be involved in the pathogenesis of sCRC. In this study, we demonstrate that RASSF6 acts as a tumor suppressor in colon cancer cells. Decreased level of RASSF6 was observed in adenocarcinoma compared to normal tissues, especially in advanced tumor cases. Further experiments showed exogenous introduction of RASSF6 into LoVo cells suppressed cell proliferation, migration, invasion, and induced apoptosis in vitro as well as tumor growth in vivo. In contrast, knockdown of RASSF6 in HT-29 cells showed the opposite effects. Taken together, our results suggest, in addition to epigenetics changes, functional somatic mutations may also contribute to the downregulation of RASSF6 and further participate in the pathogenesis of sCRC. RASSF6 may serve as a novel candidate against tumor growth for sCRC.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Colorrectales/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proteínas Reguladoras de la Apoptosis , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Interferencia de ARN , Trasplante Heterólogo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA