Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Med Rep ; 24(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34132368

RESUMEN

Although diabetic encephalopathy (DE) is a major late complication of diabetes, the pathophysiology of postural instability in DE remains poorly understood. Prior studies have suggested that neuronal apoptosis is closely associated with cognitive function, but the mechanism remains to be elucidated. Green tea, which is a non­fermented tea, contains a number of tea polyphenols, alkaloids, amino acids, polysaccharides and other components. Some studies have found that drinking green tea can reduce the incidence of neurodegenerative diseases and improve cognitive dysfunction. We previously found that myosin light chain kinase (MLCK) regulates apoptosis in high glucose­induced hippocampal neurons. In neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, activation of the JNK signaling pathway promotes neuronal apoptosis. However, the relationship between JNK and MLCK remains to be elucidated. Green tea serum was obtained using seropharmacological methods and applied to hippocampal neurons. In addition, a type 1 diabetes rat model was established and green tea extract was administered, and the Morris water maze test, Cell Counting Kit­8 assays, flow cytometry, western blotting and terminal deoxynucleotidyl transferase­mediated dUTP nick end­labelling assays were used to examine the effects of green tea on hippocampal neuronal apoptosis in diabetic rats. The results demonstrated that green tea can protect against hippocampal neuronal apoptosis by inhibiting the JNK/MLCK pathway and ultimately improves cognitive function in diabetic rats. The present study provided novel insights into the neuroprotective effects of green tea.


Asunto(s)
Apoptosis/efectos de los fármacos , Encefalopatías/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hipocampo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Encefalopatías/tratamiento farmacológico , Células Cultivadas , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Hipocampo/citología , Hipocampo/metabolismo , Etiquetado Corte-Fin in Situ , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales , Quinasa de Cadena Ligera de Miosina/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Té/química
2.
J Cell Biochem ; 120(2): 1156-1164, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30430650

RESUMEN

Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/ß-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/ß-catenin signaling pathway.

3.
J Chromatogr A ; 1498: 64-71, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28381362

RESUMEN

An organic-silica hybrid monolithic capillary column was fabricated by crosslinking (3-aminopropyl)trimethoxysilane (APTMS) modified mesoporous carbon nanoparticles (AP-MCNs) with tetramethoxysilane (TMOS) and n-butyltrimethoxysilane (C4-TriMOS). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, mercury intrusion porosimetry and inverse size-exclusion chromatography characterization proved the successful immobilization of mesoporous carbon nanoparticles (MCNs). The crosslinking of AP-MCNs into the hybrid monolithic matrix has significantly increased the reversed-phase retention of alkylbenzenes and chromatographic performance for small molecules separations in comparison with the neat one without MCNs. The resulting column efficiency of the mesoporous carbon nanoparticle-based butyl-silica hybrid monolithic column (MCN-C4-monolith) was up to ca. 116,600N/m for the capillary liquid chromatography (cLC) separation of butylbenzene. Enhanced performance of proteins separation was achieved on the MCN-C4-monolith in comparison with the butyl-silica hybrid monolithic column without MCN (C4-monolith). The separation of peptides from bovine serum albumin (BSA) digest was carried out on the MCN-C4-monolith by capillary liquid chromatography-tandem mass spectrometry (cLC-MS/MS) with protein sequence coverage of 81.9%, suggesting its potential application in proteomics.


Asunto(s)
Carbono/química , Cromatografía Liquida/métodos , Nanopartículas/química , Dióxido de Silicio/química , Microscopía Electrónica de Rastreo , Péptidos/química , Péptidos/aislamiento & purificación , Espectroscopía de Fotoelectrones , Albúmina Sérica Bovina/química , Silanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA