Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Gen Med ; 17: 2527-2538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841128

RESUMEN

Background: Emerging evidence suggests that systemic inflammatory and nutritional biomarkers, along with derived indices, could serve as predictors for sarcopenia in cancer population. This study aimed to compare these predictors, focusing on the nutritional risk index (NRI) and evaluate its diagnostic value, for sarcopenic patients without cancer. Methods: This cross-sectional retrospective study included 1674 participants. Sarcopenia is defined by skeletal muscle mass index (SMI). Laboratory data reflected the values of systemic inflammatory and nutritional biomarkers, from which the derived indices were calculated. Multiple logistic regression analysis, ROC curve analysis, and the Youden index were utilized to assess the association between these markers and sarcopenia and determine the cutoff value for predicting sarcopenia. Results: Among all participants (1110 men and 564 women, mean age 61.97 ± 9.83 years), 398 individuals were diagnosed with sarcopenia, indicating a prevalence of 23.78% in China's middle-aged and elderly population without cancer. Logistic regression analysis revealed significant associations between all biomarkers and derived indices with sarcopenia. Following adjustment for potential confounders, lower NRI values were significantly associated with a higher incidence of sarcopenia. For sarcopenia diagnosis, the area under the curve (AUC) for NRI was 0.769 ([95% CI, 0.742, 0.796], P < 0.001), with a cutoff value of 106.016, sensitivity of 75.6% and specificity of 66.1%. NRI demonstrated greater predictive advantage for sarcopenia incidence in men compared to women. Conclusion: A lower NRI value was associated with a higher prevalence of sarcopenia. NRI shows promise for early, rapid, and effective sarcopenia screening, particularly in China's middle-aged and elderly male population without cancer.

2.
Foods ; 13(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38790878

RESUMEN

Liquid fermentation is an efficient culture for obtaining polysaccharides from edible mushrooms. In this study, the polysaccharide content and biomass were examined by introducing microorganisms into the Wolfiporia cocos fermentation system. Three edible mushroom co-fermentation systems were established, among which the Wolfiporia cocos-Ganoderma lucidum co-fermentation system significantly increased the mycelial biomass of the system by 57.71% compared to Wolfiporia cocos alone and 91.22% compared to Ganoderma lucidum alone, and the intracellular polysaccharide content was significantly increased. Physiological activities of polysaccharides showed that mycelial polysaccharides in the Wolfiporia cocos-Ganoderma lucidum system had stronger anti-tumor cell value-adding and anti-tumor cell migration activities compared with Wolfiporia cocos and Ganoderma lucidum fermentation alone. The transcriptomic study of Wolfiporia cocos mycelium induced by exogenous substances suggested that the exogenous substances could enhance the intracellular polysaccharide content of Wolfiporia cocos through the upregulation of the expression of α-glycosyltransferase encoded by ALG10 and the downregulation of α-glycosidases encoded by MAN1B in the glycolytic metabolism of Wolfiporia cocos. This study provides a new direction for the transformation of polysaccharides from Wolfiporia cocos and Ganoderma lucidum into functional foods and new product development, and provides an experimental basis.

3.
Cancer Cell Int ; 24(1): 172, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750489

RESUMEN

BACKGROUND: Cervical cancer is a human papillomavirus (HPV)-related disease. HPV type 16 (HPV16), which is the predominant cause of cervical cancer, can encode miRNAs (HPV16-miRNAs). However, the role of HPV16-miRNAs in the pathogenesis of cervical cancer remains unclear. METHODS: Human cervical cancer cell lines SiHa (HPV16-positive) and C33A (HPV-negative), and cervical cancer tissues were collected to investigate the expression levels of two HPV16-miRNAs (HPV16-miR-H1 and HPV16-miR-H6). The overexpression and knockdown of HPV16-miR-H1 and HPV16-miR-H6 were performed using the lentiviral vector system and miRNA inhibitors, respectively. RNA-sequencing (RNA-seq) analysis and H3K27ac chromatin immunoprecipitation and sequencing (CHIP-seq) experiments were utilized to explore the roles of HPV16-miR-H1 and HPV16-miR-H6 facilitated by enhancers. CCK8, EdU, transwell, and wound healing assays were performed to verify the effects of HPV16-miR-H1 and HPV16-miR-H6 on cell proliferation and migration. RESULTS: HPV16-miR-H1 and HPV16-miR-H6 were highly expressed in both SiHa cells and tissue samples from HPV16-positive cervical cancer patients. RNA-seq analysis showed that HPV16-miR-H1 and HPV16-miR-H6 induced the upregulation of numerous tumor progression-associated genes. H3K27ac CHIP-seq experiments further revealed that HPV16-miR-H1 and HPV16-miR-H6 modulated the expression of critical genes by regulating their enhancer activity. The functional study demonstrated that HPV16-miR-H1 and HPV16-miR-H6 increased the migratory capacity of SiHa cells. CONCLUSIONS: Our data shed light on the role of HPV16-encoded miRNAs in cervical cancer, particularly emphasizing their involvement in the miRNA-enhancer-target gene system. This novel regulatory mechanism of HPV16-miRNAs provides new insights and approaches for the development of therapeutic strategies by targeting HPV16-positive cervical cancer.

4.
Carbohydr Polym ; 334: 122031, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553230

RESUMEN

The efficacy of cancer therapies is significantly compromised by the immunosuppressive tumor milieu. Herein, we introduce a previously unidentified therapeutic strategy that harnesses the synergistic potential of chitosan-coated bacterial vesicles and a targeted chemotherapeutic agent to activate dendritic cells, thereby reshaping the immunosuppressive milieu for enhanced cancer therapy. Our study focuses on the protein-mediated modification of bacterium-derived minicells with chitosan molecules, facilitating the precise delivery of Doxorubicin to tumor sites guided by folate-mediated homing cues. These engineered minicells demonstrate remarkable specificity in targeting lung carcinomas, triggering immunogenic cell death and releasing tumor antigens and damage-associated molecular patterns, including calreticulin and high mobility group box 1. Additionally, the chitosan coating, coupled with bacterial DNA from the minicells, initiates the generation of reactive oxygen species and mitochondrial DNA release. These orchestrated events culminate in dendritic cell maturation via activation of the stimulator of interferon genes signaling pathway, resulting in the recruitment of CD4+ and CD8+ cytotoxic T cells and the secretion of interferon-ß, interferon-γ, and interleukin-12. Consequently, this integrated approach disrupts the immunosuppressive tumor microenvironment, impeding tumor progression. By leveraging bacterial vesicles as potent dendritic cell activators, our strategy presents a promising paradigm for synergistic cancer treatment, seamlessly integrating chemotherapy and immunotherapy.


Asunto(s)
Quitosano , Neoplasias Pulmonares , Neoplasias , Humanos , Quitosano/uso terapéutico , Inmunomodulación , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Células Dendríticas , Microambiente Tumoral
5.
J Ovarian Res ; 17(1): 35, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317224

RESUMEN

PURPOSE: PAQR7 plays a key role in cell apoptosis as a progesterone membrane receptor. The physiological mechanism of PAQR7 in ovarian function and its anti-apoptotic action in mammals remain poorly understood. METHODS: We first added 0.2 µM aminoglutethimide (AG), an inhibitor of endogenous progesterone (P4) secretion, and transfected siPAQR7 co-incubated with P4 in human KGN cells to identify granulosa cell apoptosis, respectively. Additionally, we used Paqr7 knockout (PAQR7 KO) mice to assess the role of PAQR7 in the ovary. RESULTS: The PAQR7 deficiency significantly increased apoptosis of KGN cells, and this significant difference disappeared following P4 supplementation. The Paqr7-/- female mice showed a prolonged estrous cycle, reduced follicular growth, increased the number of atresia follicles, and decreased the concentrations of E2 and AMH. The litters, litter sizes, and spontaneous ovulation in the Paqr7-/- mice were significantly decreased compared with the Paqr7+/+ mice. In addition, we also found low expression of PAQR7 in GCs from human follicular fluids of patients diagnosed with decreased ovarian reserve (DOR) and ovaries of mice with a DOR-like phenotype, respectively. CONCLUSIONS: The present study has identified that PAQR7 is involved in mouse ovarian function and fertilization potential. One possible mechanism is mediating the anti-apoptotic effect of P4 on GC apoptosis via the BCL-2/BAX/CASPASE-3 signaling pathway. The mechanism underlying the effect of PAQR7 on ovarian development and aging remains to be identified.


Asunto(s)
Progesterona , Receptores Acoplados a Proteínas G , Receptores de Progesterona , Animales , Femenino , Humanos , Ratones , Apoptosis , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
BMC Oral Health ; 24(1): 136, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280992

RESUMEN

BACKGROUND: The aim of this study was to analyse the differences in the phenotypes of missing teeth between a pair of brothers with hypohidrotic ectodermal dysplasia (HED) and to investigate the underlying mechanism by comparing the mutated gene loci between the brothers with whole-exome sequencing. METHODS: The clinical data of the patients and their mother were collected, and genomic DNA was extracted from peripheral blood samples. By Whole-exome sequencing filtered for a minor allele frequency (MAF) ≤0.05 non-synonymous single-nucleotide variations and insertions/deletions variations in genes previously associated with tooth agenesis, and variations considered as potentially pathogenic were assessed by SIFT, Polyphen-2, CADD and ACMG. Sanger sequencing was performed to detect gene variations. The secondary and tertiary structures of the mutated proteins were predicted by PsiPred 4.0 and AlphaFold 2. RESULTS: Both brothers were clinically diagnosed with HED, but the younger brother had more teeth than the elder brother. An EDA variation (c.878 T > G) was identified in both brothers. Additionally, compound heterozygous variations of WNT10A (c.511C > T and c.637G > A) were identified in the elder brother. Digenic variations in EDA (c.878 T > G) and WNT10A (c.511C > T and c.637G > A) in the same patient have not been reported previously. The secondary structure of the variant WNT10A protein showed changes in the number and position of α-helices and ß-folds compared to the wild-type protein. The tertiary structure of the WNT10A variant and molecular simulation docking showed that the site and direction where WNT10A binds to FZD5 was changed. CONCLUSIONS: Compound heterozygous WNT10A missense variations may exacerbate the number of missing teeth in HED caused by EDA variation.


Asunto(s)
Anodoncia , Displasia Ectodermal Anhidrótica Tipo 1 , Displasia Ectodérmica , Diente , Masculino , Humanos , Displasia Ectodermal Anhidrótica Tipo 1/complicaciones , Displasia Ectodermal Anhidrótica Tipo 1/genética , Displasia Ectodérmica/genética , Fenotipo , Anodoncia/genética , Mutación , Proteínas Wnt/genética
7.
Heliyon ; 10(1): e23056, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163170

RESUMEN

Objectives: To analyse the pathogenic genes in a patient with hypohidrotic ectodermal dysplasia (HED) and explore the relationship between pathogenic genes and the oligodontia phenotype. Methods: Clinical data and peripheral blood were collected from a patient with HED. Pathogenic genes were analysed by whole-exon sequencing (WES) and verified by Singer sequencing. The secondary and tertiary structures of the variant proteins were predicted to analyse their toxicity. Results: The patient exhibited a severe oligodontia phenotype, wherein only two deciduous canines were left in the upper jaw. WES revealed a hemizygous EDA variant c.466C > T p.(Arg156Cys) and a novel heterozygous EVC2 variant c.1772T > C p.(Leu591Ser). Prediction of the secondary and tertiary structures of the EDA variant p.(Arg156Cys) and EVC2 variant p.(Leu591Ser) indicated impaired function of both molecules. Conclusion: The patient demonstrated a more severe oligodontia phenotype when compared with the other patients caused by the EDA variant c.466C > T. Since Evc2 is a positive regulator of the Sonic Hedgehog (Shh) signal pathway, we speculated that the EVC2 variant p.(Leu591Ser) may play a synergistic role in the oligodontia phenotype of HED, thereby exacerbating the oligodontia phenotype. Knowledge of oligodontia caused by multiple gene variants is of great significance for understanding individual differences in oligodontia phenotypes.

8.
J Adv Res ; 57: 119-134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37094666

RESUMEN

INTRODUCTION: The epithelial immunomodulation and regeneration are intrinsic critical events against inflammatory bowel disease (IBD). MiR-7 is well documented as a promising regulator in the development of various diseases including inflammatory diseases. OBJECTIVES: This study aimed to assess the effect of miR-7 in intestinal epithelial cells (IECs) in IBD. METHODS: MiR-7def mice were given dextran sulfate sodium (DSS) to induce enteritis model. The infiltration of inflammatory cells was measured by FCM and immunofluorescence assay. 5'deletion assay and EMSA assays were performed to study the regulatory mechanism of miR-7 expression in IECs. The inflammatory signals and the targets of miR-7 were analyzed by RNA-seq and FISH assay. IECs were isolated from miR-7def, miR-7oe and WT mice to identify the immunomodulation and regeneration capacity. IEC-specific miR-7 silencing expression vector was designed and administered by the tail vein into murine DSS-induced enteritis model to evaluate the pathological lesions of IBD. RESULTS: We found miR-7 deficiency improved the pathological lesions of DSS-induced murine enteritis model, accompanied by elevated proliferation and enhanced transduction of NF-κB/AKT/ERK signals in colonic IECs, as well as decreased local infiltration of inflammatory cells. MiR-7 was dominantly upregulated in colonic IECs in colitis. Moreover, the transcription of pre-miR-7a-1, orchestrated by transcription factor C/EBPα, was a main resource of mature miR-7 in IECs. As for the mechanism, EGFR, a miR-7 target gene, was downregulated in colonic IECs in colitis model and Crohn's disease patients. Furthermore, miR-7 also controlled the proliferation and inflammatory-cytokine secretion of IECs in response to inflammatory-signals through EGFR/NF-κB/AKT/ERK pathway. Finally, IEC-specific miR-7 silencing promoted the proliferation and transduction of NF-κB pathway in IECs and alleviated the pathological damage of colitis. CONCLUSION: Our results present the unknown role of miR-7/EGFR axis in IEC immunomodulation and regeneration in IBD and might provide clues for the application of miRNA-based therapeutic strategies in colonic diseases.


Asunto(s)
Colitis , Enteritis , Enfermedades Inflamatorias del Intestino , MicroARNs , Humanos , Animales , Ratones , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , Colitis/inducido químicamente , Células Epiteliales , Regeneración , Receptores ErbB
9.
Cancer Lett ; 584: 216600, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159835

RESUMEN

Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Understanding the underlying mechanism driving CRC progression and identifying potential therapeutic drug targets are of utmost urgency. We previously utilized LC-MS-based proteomic profiling to identify proteins associated with postoperative progression in stage II/III CRC. Here, we revealed that proteasome subunit beta type-1 (PSMB1) is an independent predictor for postoperative progression in stage II/III CRC. Mechanistically, PSMB1 binds directly to onco-protein RAB34 and promotes its proteasome-dependent degradation, potentially leading to the inactivation of the MEK/ERK signaling pathway and inhibition of CRC progression. To further identify potential anticancer drugs, we screened a library of 2509 FDA-approved drugs using computer-aided drug design (CADD) and identified Kinetin as a potentiating agent for PSMB1. Functional assays confirmed that Kinetin enhanced the interaction between PSMB1 and RAB34, hence facilitated the degradation of RAB34 protein and decreased the MEK/ERK phosphorylation. Kinetin suppresses CRC progression in patient-derived xenograft (PDX) and liver metastasis models. Conclusively, our study identifies PSMB1 as a potential biomarker and therapeutic target for CRC, and Kinetin as an anticancer drug by enhancing proteasome-dependent onco-protein degradation.


Asunto(s)
Neoplasias Colorrectales , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Cinetina , Proteómica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Línea Celular Tumoral
10.
ACS Appl Mater Interfaces ; 15(37): 44175-44185, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37669460

RESUMEN

Nanomedicines have contradictory size requirements to overcome systemic barriers and penetrate the tumor extracellular matrix (ECM). Larger-sized nanoparticles (50-200 nm) exhibit prolonged blood circulation half-life and improved tumor enrichment, while small-sized nanoparticles (4-20 nm) easily penetrate deep tumor tissues. Therefore, the development of intelligent responsive nanomedicine systems can not only increase nanodrug tumor accumulation but also improve their penetration into the ECM. Herein, we propose an intelligent responsive nanoparticle triggered by near-infrared light (NIR). The nanoparticle was constructed by a temperature-sensitive liposome (TSL) encapsulating ultrasmall melanin nanoparticles (MNPs) loaded with doxorubicin (MNP/doxorubicin (DOX)@TSL). When exposed to NIR irradiation, the tailor-made nanoparticles not only effectively ablated the tumor cells around blood vessels but also destroyed the structural integrity and released loaded ultrasmall MNP/DOX (<10 nm) to promote deep tumor penetration and enhance interior tumor cell killing. This NIR-triggered intelligent nanoparticle successfully integrated photothermal therapy (PTT) for perivascular tumor cells and chemotherapy for deep tumor cell inhibition. The in vivo results showed remarkable tumor regression in 4T1 breast tumor-bearing mice by 74.2%. This controllable size switchable nanosystem with efficient tumor accumulation and penetration has shown great potential in improving synergistic antitumor effects of photochemotherapy.


Asunto(s)
Neoplasias Mamarias Animales , Nanopartículas , Fotoquimioterapia , Animales , Ratones , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
11.
Aging (Albany NY) ; 15(17): 8930-8947, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37688769

RESUMEN

Hepatocellular carcinoma (HCC) is the most common subtype, accounting for about 90% of all primary liver cancers. The liver is rich in a large number of immune cells, thus forming a special immune microenvironment, which plays a key role in the occurrence and development of hepatocellular carcinoma. Nowadays, tumor immunotherapy has become one of the most promising cancer treatment methods. Immune checkpoint inhibitors (ICIs) combined with VEGF inhibitors are listed as first-line treatment options for advanced HCC. Therefore, the search for a potential biomarker to predict the response to immunotherapy in HCC patients is urgently needed. The G protein-coupled receptor 55 (GPR55), a lysophosphatidylinositol (LPI) receptor, has recently emerged as a potential new target for anti-tumor therapy. Previous studies have found that GPR55 is highly expressed in breast cancer, pancreatic cancer, skin cancer and cholangiocarcinoma, and is involved in tumor proliferation and migration. However, the role and mechanism of GPR55 in HCC has not been elucidated. Therefore, this article discusses the clinical significance of GPR55 in HCC and its correlation with the immune response of HCC patients, so as to provide theoretical basis for improving the prognosis of HCC.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Conductos Biliares Intrahepáticos , Microambiente Tumoral , Receptores de Cannabinoides
12.
Life Sci ; 330: 121855, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419413

RESUMEN

Brain cancer is a deadly disease with low survival rates for over 70 % of patients. Therefore, there is a critical need to develop better treatment methods and strategies to improve patient outcomes. In this study, we explored the tumor microenvironment and discovered unique characteristics of microglia to interact with astrocytoma cells and promote proliferation and migration of collisions. The conditioned medium from the collisions expressed cell chemoattraction and anti-inflammatory responses. To further understand the interactions between microglia and astrocytoma cells, we used flow sorting and protein analysis found that the protein alterations were related to biogenesis in the astrocytoma cells and metabolic processes in the microglia. Both types of cells were involved in binding and activity in cell-cell interactions. Using STRING to demonstrate the protein cross-interaction between the cells. Furthermore, PHB and RDX interact with oncogenic proteins, which were significantly expressed in patients with Glioblastoma Multiforme (GBM) and low-grade glioma (LGG) according to GEPIA. To study the role of RDX in chemoattraction, the inhibitor-NSC668394 suppressed collision formation and migration in BV2 cells in vitro by down-regulating F-actin. Additionally, it suppressed macrophage infiltration in infiltrating islands in vivo of intracranial tumor-bearing mice. These findings provide evidence for the role of resident cells in mediating tumor development and invasiveness and suggest that potential interacting molecules may be a strategy for controlling tumor growth by regulating the infiltration of tumor-associated microglia in the brain tumor microenvironment.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Ratones , Animales , Microglía/metabolismo , Multiómica , Astrocitoma/metabolismo , Astrocitoma/patología , Glioma/patología , Glioblastoma/patología , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Microambiente Tumoral , Línea Celular Tumoral
13.
Clin Lab ; 69(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436377

RESUMEN

BACKGROUND: Colorectal cancer (CRC) screening is the most efficient strategy to reduce disease-related mortality. In this study, we aimed to investigate the association of a methylation-based stool DNA test with serum protein biomarker panel (CEA, CA125, CA199, and AFP) in CSC patients and their relationship with pathological features to improve the diagnostic efficacy and applicability in CSC in the Chinese population. METHODS: In this double-blinded case-control study, we enrolled 150 participants from our hospital, including 50 CRC patients, 50 adenomas, and 50 healthy controls. We compared the cycling threshold (Ct) values of stool DNA-based SDC2 measured by quantitative methylation-specific PCR (MSP) in the three groups. We also evaluated the differences and correlation between serum concentrations of tumor biomarker and pathological features in patients with CSC, including TNM stage (I, II, III), tumor size, and lymph node metastasis. The discrimination performance of indexes was assessed using sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC). RESULTS: CSC was more common in middle-aged people and men. The methylation-based stool DNA test was not significantly correlated with other tumor indicators except CEA, and the difference was statistically significant. Compared with the normal control group, the combined diagnostic value of the methylation-based stool DNA test and tumor indicators was significantly higher than individual biomarkers alone, especially the methylation-based stool DNA test combined with CEA and AFP, which improved the AUC to 0.96. This combination can increase the positive rate of pathological stage diagnosis. CONCLUSIONS: Combining a methylation-based stool DNA test with CEA and AFP can significantly improve the diagnostic value of CRC and can be used to confirm the diagnosis of colorectal cancer. This combination can also be used as a reliable indicator identifying early-stage CRC patients and pathology. A large-scale study is underway to further define the clinical application of this method for the diagnosis of CRC among Chinese populations.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Masculino , Persona de Mediana Edad , Humanos , Biomarcadores de Tumor/genética , Metilación de ADN , Estudios de Casos y Controles , alfa-Fetoproteínas , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN , Sindecano-2/genética
14.
Front Immunol ; 14: 1167667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304282

RESUMEN

Background and aims: In the course of clinical practice, hepatic ischemia/reperfusion (I/R) injury is a prevalent pathophysiological event and is caused by a combination of complex factors that involve multiple signaling pathways such as MAPK and NF-κB. USP29 is a deubiquitinating enzyme important during the development of tumors, neurological diseases, and viral immunity. However, it is unknown how USP29 contributes to hepatic I/R injury. Methods and results: We systematically investigated the role of the USP29/TAK1-JNK/p38 signaling pathway in hepatic I/R injury. We first found reduced USP29 expression in both mouse hepatic I/R injury and the primary hepatocyte hypoxia-reoxygenation (H/R) models. We established USP29 full knockout mice (USP29-KO) and hepatocyte-specific USP29 transgenic mice (USP29-HTG), and we found that USP29 knockout significantly exacerbates the inflammatory infiltration and injury processes during hepatic I/R injury, whereas USP29 overexpression alleviates liver injury by decreasing the inflammatory response and inhibiting apoptosis. Mechanistically, RNA sequencing results showed the effects of USP29 on the MAPK pathway, and further studies revealed that USP29 interacts with TAK1 and inhibits its k63-linked polyubiquitination, thereby preventing the activation of TAK1 and its downstream signaling pathways. Consistently, 5z-7-Oxozeaneol, an inhibitor of TAK1, blocked the detrimental effects of USP29 knockout on H/R-induced hepatocyte injury, further confirming that USP29 plays a regulatory role in hepatic I/R injury by targeting TAK1. Conclusion: Our findings imply that USP29 is a therapeutic target with promise for the management of hepatic I/R injury via TAK1-JNK/p38 pathway-dependent processes.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Daño por Reperfusión , Animales , Ratones , Hígado , Quinasas Quinasa Quinasa PAM/genética , Ratones Noqueados , Ratones Transgénicos , Daño por Reperfusión/genética , Proteasas Ubiquitina-Específicas/genética
15.
Clin Nucl Med ; 48(9): e434-e435, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385219

RESUMEN

ABSTRACT: Primary cardiac chondrosarcoma invading the right pulmonary vein is very rare, whereas secondary cardiac chondrosarcoma is relatively common. We reported the 18 F-FDG PET/CT findings of primary cardiac chondrosarcoma and pulmonary inflammation misdiagnosed as cardiac malignancy and pulmonary metastasis in a 27-year-old man.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Neumonía , Masculino , Humanos , Adulto , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Condrosarcoma/diagnóstico por imagen
16.
Gastroenterol Rep (Oxf) ; 11: goad033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360194

RESUMEN

Background: Aquaporin 9 (AQP9) is permeable to water or other small molecules, and plays an important role in various cancers. We previously found that AQP9 was related to the efficacy of chemotherapy in patients with colorectal cancer (CRC). This study aimed to identify the role and regulatory mechanism of AQP9 in CRC metastasis. Methods: The clinical significance of AQP9 was analysed by using bioinformatics and tissue microarray. Transcriptome sequencing, Dual-Luciferase Reporter Assay, Biacore, and co-immunoprecipitation were employed to demonstrate the regulatory mechanism of AQP9 in CRC. The relationship between AQP9 and CRC metastasis was verified in vitro and in vivo by using real-time cell analysis assay, high content screening, and liver metastasis models of nude mice. Results: We found that AQP9 was highly expressed in metastatic CRC. AQP9 overexpression reduced cell roundness and enhanced cell motility in CRC. We further showed that AQP9 interacted with Dishevelled 2 (DVL2) via the C-terminal SVIM motif, resulting in DVL2 stabilization and the Wnt/ß-catenin pathway activation. Additionally, we identified the E3 ligase neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) as a modulator regulating the ubiquitination and degradation of AQP9. Conclusions: Collectively, our study revealed the important role of AQP9 in regulating DVL2 stabilization and Wnt/ß-catenin signaling to promote CRC metastasis. Targeting the NEDD4L-AQP9-DVL2 axis might have therapeutic usefulness in metastatic CRC treatment.

18.
Transpl Immunol ; 78: 101828, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948406

RESUMEN

BACKGROUND: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and the most common hereditary disease leading to end-stage renal disease in children and adolescents. The NPHP1 gene was the first NPHP gene to be discovered. Pathogenic variation of the NPHP1 gene can cause juvenile renal wasting disease type 1. CASE PRESENTATION: Here, we report the first case of living related kidney transplantation of monozygotic twins with NPHP1 nephronophthisis in China; one of these cases involved cross-blood type kidney transplantation. Our experience shows that patients with NPHP1 nephronophthisis have almost no risk recurrent kidney disease following living related kidney transplantation and genetic testing. The two twins recovered well without any complications. CONCLUSIONS: This is the first report of living related kidney transplantation of monozygotic twins with heterozygous deletion of the NPHP1 gene in a Chinese family with NPHP. In addition, genetic testing provides an efficient means of evaluating the safety of living related kidney transplantation in patients with NPHP1 nephronophthisis.


Asunto(s)
Trasplante de Riñón , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/genética , Pueblos del Este de Asia , Homocigoto , Donadores Vivos , Proteínas de la Membrana/genética , Eliminación de Secuencia , Gemelos Monocigóticos
19.
J Enzyme Inhib Med Chem ; 38(1): 2166039, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36683274

RESUMEN

Inhibiting a specific target in cancer cells and reducing unwanted side effects has become a promising strategy in pancreatic cancer treatment. MAP4K4 is associated with pancreatic cancer development and correlates with poor clinical outcomes. By phosphorylating MKK4, proteins associated with cell apoptosis and survival are translated. Therefore, inhibiting MAP4K4 activity in pancreatic tumours is a new therapeutic strategy. Herein, we performed a structure-based virtual screening to identify MAP4K4 inhibitors and discovered the compound F389-0746 with a potent inhibition (IC50 120.7 nM). The results of kinase profiling revealed that F389-0746 was highly selective to MAP4K4 and less likely to cause side effects. Results of in vitro experiments showed that F389-0746 significantly suppressed cancer cell growth and viability. Results of in vivo experiments showed that F389-0746 displayed comparable tumour growth inhibition with the group treated with gemcitabine. These findings suggest that F389-0746 has promising potential to be further developed as a novel pancreatic cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Humanos , Línea Celular Tumoral , Gemcitabina/química , Gemcitabina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pancreáticas/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Simulación por Computador , Neoplasias Pancreáticas
20.
J Plant Physiol ; 280: 153894, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525836

RESUMEN

Mahonia bealei and Mahonia fortunei are important plant resources in Traditional Chinese Medicine that are valued for their high levels of benzylisoquinoline alkaloids (BIAs). Although the phytotoxic activity of BIAs has been recognized, information is limited on the mechanism of action by which these compounds regulate photosynthetic activity. Here, we performed comparative chloroplast genome analysis to examine insertions and deletions in the two species. We found a GATA-motif located in the promoter region of the ndhF gene of only M. bealei. K-mer frequency-based diversity analysis illustrated the close correlation between the GATA-motif and leaf phenotype. We found that the GATA-motif significantly inhibits GUS gene expression in tobacco during the dark-light transition (DLT). The expression of ndhF was downregulated in M. bealei and upregulated in M. fortunei during the DLT. NDH-F activity was remarkably decreased and exhibited a significant negative correlation with BIA levels in M. bealei during the DLT. Furthermore, the NADPH produced through photosynthetic metabolism was found to decrease in M. bealei during the DLT. Taken together, our results indicate that this GATA-motif might act as the functional site by which BIAs inhibit photosynthetic metabolism through downregulating ndhF expression during the DLT.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Mahonia , Mahonia/química , Extractos Vegetales/farmacología , Cloroplastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA