Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cancer Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953880

RESUMEN

Resistance to osimertinib represents a significant challenge for the successful treatment of non-small cell lung cancer (NSCLC) harboring activating mutations in epidermal growth factor receptor (EGFR). N6-methyladenosine (m6A) on mRNAs is critical for various biological processes, yet whether m6A regulates osimertinib resistance of NSCLC remains unknown. In this study, we demonstrated that developing osimertinib-resistant phenotypes depends on m6A reduction resulting from downexpression of m6A methyltransferase METTL14 in EGFR-mutant NSCLCs. Both in vitro and in vivo assay showed that specific knockdown of METTL14 was sufficient to confer osimertinib resistance and elevated expression of METTL14 rescued the efficacy of osimertinib in the resistant NSCLC cells. Mechanistically, METTL14 promoted m6A methylation of pro-apoptotic Bim mRNA and increased Bim mRNA stability and expression, resulting in activating the Bim-dependent pro-apoptotic signaling and thereby promoting osimertinib-induced cell apoptosis. Analysis of clinical samples revealed that decreased expression of METTL14 was observed in osimertinib-resistant NSCLC tissues and significantly associated with a poor prognosis. In conclusion, our study reveals a novel regulatory mechanism by which METTL14-mediated m6A methylation of Bim mRNA inhibited osimertinib resistance of NSCLC cells. It offers more evidences for the involvement of m6A modification in regulation of osimertinib resistance, and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR-TKIs. Implications: This study offers more evidences for the involvement of METTL14-mediated m6A modification in regulation of osimertinib resistance, and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR-TKIs.

2.
Placenta ; 151: 67-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723477

RESUMEN

INTRODUCTION: Interleukin-1 beta (IL-1ß) can promote cell migration, invasion and metastasis in various cancer cells. The mechanism of its role in human trophoblast has not been fully investigated. Therefore, we aimed to investigate the expression level of IL-1ß in first trimester decidua and placenta and its potential role in regulation of extravillous trophoblast cell (EVT) invasion and migration. METHODS: First trimester placenta and decidua were collected to study the expression levels of IL-1ß and its receptors by immunohistochemical staining. Primary isolates of first trimester EVT or the HTR-8/SVneo trophoblast like cell line were used to assess migration and invasion. Matrix metalloproteinase levels were assessed by gelatin zymography and ELISA. The phosphorylation profile of signaling pathway proteins was detected with the Proteome Profiler Human Phospho-Kinase Array Kit. Differentially expressed proteins in cells was detected and verified by Western Blot. RESULTS: IL-1ß, its receptors and antagonist are expressed in first trimester placenta and decidua, exogenous IL-1ß stimulates trophoblast cell outgrowth, migration and invasion through the ERK signaling pathway. IL-1ß was significantly increased in the placenta at 6-7 weeks gestation compared with 8-9 weeks gestation (P < 0.0001). Transwell and RTCA assays indicated that IL-1ß stimulates the invasion and migration of EVT. In addition, IL-1ß promoted the phosphorylation of ERK 1/2. It also promoted the expression of MMP2 and MMP9 in EVT as demonstrated by gelatin zymography assay and enzyme linked immunosorbent assay. DISCUSSION: This study demonstrated IL-1ß expression in placenta and decidua, and that it regulates EVT invasion and migration.


Asunto(s)
Movimiento Celular , Interleucina-1beta , Sistema de Señalización de MAP Quinasas , Primer Trimestre del Embarazo , Trofoblastos , Humanos , Femenino , Embarazo , Trofoblastos/metabolismo , Movimiento Celular/fisiología , Primer Trimestre del Embarazo/metabolismo , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Placenta/metabolismo , Decidua/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo
3.
Cell Signal ; 117: 111079, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341124

RESUMEN

Circular RNAs (circRNAs), a subclass of non-coding RNAs characterized by covalently closed continuous loops, play a key role in tumorigenesis and aggressiveness. However, the potential molecular mechanism of circRNAs in triple-negative breast cancer (TNBC) remains largely unknown. Exploring their roles and mechanisms in TNBC progression may help identify new diagnostic markers and therapeutic targets. In this study, we found that circ-FOXO3 was dramatically downregulated in TNBC tissues and blood samples from patients with TNBC. Notably, low circ-FOXO3 expression in TNBC tissues and bloods was associated with lymph node metastasis and unfavorable outcomes in patients with TNBC. Overexpression of circ-FOXO3 significantly inhibited the growth, invasion, and metastasis of TNBC cells both in vitro and in vivo. Moreover, we demonstrated that circ-FOXO3 was predominantly expressed in the cytoplasm and directly interacted with Wolf-Hirschhorn syndrome candidate 1 (WHSC1), thereby inhibiting WHSC1 nuclear localization and activity, resulting in the inhibition of H3K36me2 modifications at the Zeb2 promoter, ultimately inhibiting Zeb2 expression and halting TNBC growth and metastasis. Taken together, these results reveal the tumor-suppressive functions of circ-FOXO3 in inhibiting WHSC1-mediated H3K36me2 modification of Zeb2, suggesting that circ-FOXO3 could serve as a potential novel predictive prognostic biomarker and therapeutic target for TNBC.


Asunto(s)
MicroARNs , ARN Circular , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , ARN Circular/genética , Neoplasias de la Mama Triple Negativas/metabolismo
4.
Biochim Biophys Acta Gen Subj ; 1867(10): 130439, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516256

RESUMEN

Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carboplatino/farmacología , Carboplatino/uso terapéutico , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas
5.
Cell Mol Life Sci ; 79(7): 375, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727412

RESUMEN

The SLC25A32 dysfunction is associated with neural tube defects (NTDs) and exercise intolerance, but very little is known about disease-specific mechanisms due to a paucity of animal models. Here, we generated homozygous (Slc25a32Y174C/Y174C and Slc25a32K235R/K235R) and compound heterozygous (Slc25a32Y174C/K235R) knock-in mice by mimicking the missense mutations identified from our patient. A homozygous knock-out (Slc25a32-/-) mouse was also generated. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice presented with mild motor impairment and recapitulated the biochemical disturbances of the patient. While Slc25a32-/- mice die in utero with NTDs. None of the Slc25a32 mutations hindered the mitochondrial uptake of folate. Instead, the mitochondrial uptake of flavin adenine dinucleotide (FAD) was specifically blocked by Slc25a32Y174C/K235R, Slc25a32K235R/K235R, and Slc25a32-/- mutations. A positive correlation between SLC25A32 dysfunction and flavoenzyme deficiency was observed. Besides the flavoenzymes involved in fatty acid ß-oxidation and amino acid metabolism being impaired, Slc25a32-/- embryos also had a subunit of glycine cleavage system-dihydrolipoamide dehydrogenase damaged, resulting in glycine accumulation and glycine derived-formate reduction, which further disturbed folate-mediated one-carbon metabolism, leading to 5-methyltetrahydrofolate shortage and other folate intermediates accumulation. Maternal formate supplementation increased the 5-methyltetrahydrofolate levels and ameliorated the NTDs in Slc25a32-/- embryos. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice had no glycine accumulation, but had another formate donor-dimethylglycine accumulated and formate deficiency. Meanwhile, they suffered from the absence of all folate intermediates in mitochondria. Formate supplementation increased the folate amounts, but this effect was not restricted to the Slc25a32 mutant mice only. In summary, we established novel animal models, which enabled us to understand the function of SLC25A32 better and to elucidate the role of SLC25A32 dysfunction in human disease development and progression.


Asunto(s)
Ácido Fólico , Defectos del Tubo Neural , Animales , Humanos , Ratones , Carbono/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ácido Fólico/metabolismo , Formiatos/metabolismo , Glicina/metabolismo , Mitocondrias/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo
6.
Cancer Commun (Lond) ; 41(1): 62-78, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-34236149

RESUMEN

BACKGROUND: Immunotherapy has been shown to be a promising strategy against human cancers. A better understanding of the immune regulation in hepatocellular carcinoma (HCC) could help the development of immunotherapy against HCC. The epidermal growth factor receptor (EGFR) signaling is frequently activated in HCC and plays important roles in tumorigenesis. However, its role in HCC immunity is still largely unknown. This study aimed to investigate the impact of EGFR signaling on programmed death-ligand 1 (PD-L1) and human leukocyte antigen class-I (HLA-I) expression in HCC cells and its underlying mechanisms. METHODS: The expression of phosphorylated EGFR (p-EGFR), PD-L1, and HLA-I (HLA-ABC) in HCC specimens was detected by immunohistochemistry, and their correlations were analyzed. PD-L1 and HLA-ABC expression in EGFR-activated HCC cells were detected by quantitative real-time PCR, Western blotting, and flow cytometry, and T cell-mediated lysis was performed to test the immunosuppressive effects of PD-L1 and HLA-ABC alterations in HCC cells. Furthermore, the underlying mechanisms of EGFR activation-induced PD-L1 up-regulation and HLA-ABC down-regulation were explored by animal experiments, luciferase reporter assay, and gene gain- and loss-of-function studies. RESULTS: p-EGFR was positively correlated with PD-L1 and negatively correlated with HLA-ABC expression in HCCs. EGFR activation by its ligand EGF up-regulated PD-L1 and down-regulated HLA-ABC in HCC cells, which was functionally important and could be abolished by the EGFR inhibitor, gefitinib, both in vitro and in vivo. Mechanistically, enhanced P38 mitogen-activated protein kinase (MAPK) activation down-regulated microRNA-675-5p (miR-675-5p) and up-regulated glycolysis-related enzyme hexokinase 2 (HK2); miR-675-5p down-regulation enhanced the stability of PD-L1 mRNA probably via the 3'-untranslated region (3'-UTR) of PD-L1 and thereby caused PD-L1 accumulation, and HK2 up-regulation enhanced aerobic glycolysis and mediated a decrease in HLA-ABC. CONCLUSIONS: The EGFR-P38 MAPK axis could up-regulate PD-L1 through miR-675-5p and down-regulate HLA-ABC via HK2 in HCC cells. Our study reveals a novel signaling network that may cause immune suppression in HCC and suggests that EGFR signaling can be targeted for HCC immunotherapy.


Asunto(s)
Antígeno B7-H1/genética , Carcinoma Hepatocelular , Antígenos HLA/genética , Hexoquinasa/metabolismo , Neoplasias Hepáticas , MicroARNs , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/genética , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , Proteínas Quinasas p38 Activadas por Mitógenos
7.
BMC Musculoskelet Disord ; 21(1): 154, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143606

RESUMEN

BACKGROUND: Hajdu-Cheney syndrome (HCS) is a rare inherited skeletal disorder caused by pathogenic mutations in exon 34 of NOTCH2. Its highly variable phenotypes make early diagnosis challenging. In this paper, we report a case of early-onset HCS with severe phenotypic manifestations but delayed diagnosis. CASE PRESENTATION: The patient was born to non-consanguineous, healthy parents of Chinese origin. She presented facial anomalies, micrognathia and skull malformations at birth, and was found hearing impairment, congenital heart disease and developmental delay during her first year of life. Her first visit to our center was at 1 year of age due to cardiovascular repair surgery for patent ductus arteriosus (PDA) and ventricular septal defect (VSD). Skull X-ray showed wormian bones. She returned at 7 years old after she developed progressive skeletal anomalies with fractures. She presented with multiple wormian bones, acro-osteolysis, severe osteoporosis, bowed fibulae and a renal cyst. Positive genetic test of a de novo heterozygous frameshift mutation in exon 34 of NOTCH2 (c.6426dupT) supported the clinical diagnosis of HCS. CONCLUSION: This is the second reported HCS case caused by the mutation c.6426dupT in NOTCH2, but presenting much earlier and severer clinical expression. Physicians should be aware of variable phenotypes so that early diagnosis and management may be achieved.


Asunto(s)
Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Pueblo Asiatico , Niño , Diagnóstico Precoz , Exones , Femenino , Mutación con Ganancia de Función , Síndrome de Hajdu-Cheney/complicaciones , Humanos , Masculino , Osteoporosis/complicaciones , Enfermedades Raras/complicaciones , Receptor Notch2/genética , Cráneo/patología , Adulto Joven
8.
J Exp Clin Cancer Res ; 39(1): 29, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024543

RESUMEN

BACKGROUND: Drug resistance is a major obstacle to treating cancers because it desensitizes cancer cells to chemotherapy. Recently, attention has been focused on changes in the tumor immune landscape after the acquisition of drug resistance. Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell-based immunity. Evidence has shown that acquired chemoresistance is associated with increased PD-L1 expression in cancer cells. However, the underlying mechanism is still largely unknown. METHODS: PD-L1 expression in three drug-resistant A549/CDDP, MCF7/ADR and HepG2/ADR cell lines was detected by qRT-PCR, western blotting and flow cytometry, and a T cell proliferation assay was performed to test its functional significance. Then, the potential roles of JNK/c-Jun, histone H3 acetylation, histone deacetylase 3 (HDAC3) and the E3 ligase COP1 in the PD-L1 increase were explored through ChIP assays and gain- and loss-of-function gene studies. Furthermore, murine xenograft tumor models were used to verify the role of JNK/c-Jun and HDAC3 in PD-L1 expression in A549/CDDP cells in vivo. Finally, the correlations of PD-L1, c-Jun and HDAC3 expression in clinical cisplatin-sensitive and cisplatin-resistant non-small cell lung cancer (NSCLC) tissues were analyzed by immunohistochemistry and Pearson's correlation coefficient. RESULTS: PD-L1 expression was significantly increased in A549/CDDP, MCF7/ADR and HepG2/ADR cells and was attributed mainly to enhanced JNK/c-Jun signaling activation. Mechanistically, decreased COP1 increased c-Jun accumulation, which subsequently inhibited HDAC3 expression and thereby enhanced histone H3 acetylation of the PD-L1 promoter. Furthermore, PD-L1 expression could be inhibited by JNK/c-Jun inhibition or HDAC3 overexpression in vivo, which could largely reverse inhibited CD3+ T cell proliferation in vitro. PD-L1 expression was significantly increased in the cisplatin-resistant clinical NSCLC samples and positively correlated with c-Jun expression but negatively correlated with HDAC3 expression. CONCLUSIONS: Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis was crucial for the PD-L1 increase in drug-resistant cancer cells. Our study reveals a novel regulatory network for the PD-L1 increase in drug-resistant cancer cells and that combined PD-L1-targeting strategies could improve T cell-based immunity in drug-resistant cancers.


Asunto(s)
Antígeno B7-H1/genética , Metilación de ADN , Resistencia a Antineoplásicos/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Acetilación , Animales , Antineoplásicos/farmacología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
9.
Am J Med Genet A ; 179(8): 1451-1458, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31172689

RESUMEN

Wilson disease (WD) is a rare autosomal recessive disorder caused by mutations in the ATP7B gene. Clinical features and mutational analysis of Chinese children with WD at early age were rarely described. Herein, we retrospectively examined 114 children with WD at the mean of 5.9 years old age at diagnosis. Eight patients developed acute liver failure at mean age of 9.7 years old, 4 of whom died. Among the 114 patients, 86.0% were presymptomatic with isolated elevation of transaminases at diagnosis, 99.1% had decreased ceruloplasmin, and 68.4% had urinary copper excretion over 100 µg/24 hr. Bi-allele pathogenic ATP7B mutations were identified in all patients. Among the 60 mutations detected, 10 were novel, including 7 missense mutations (p.I566N, p.T704I, p.C980F, p.G1030 V, p.A1096Q, p.L1327P, and p.L1373F), 1 nonsense mutation (p.K866X), 1 small insertion (p.Y44LfsX2), and 1 small deletion (p.R1118PfsX10). The most frequent mutations were p.R778L, p.P992L, and p.I1148T, which affected 27.2, 25.4, and 20.2% of the 114 WD children, respectively. The patients carrying p.R778L presented a higher rate of acute liver failure than the patients without p.R778L (9.7% vs. 4.8%). These results will be helpful in establishing early diagnosis of WD at the gene level, offering beneficial information for genetic counseling and providing clues to genotype/phenotype correlation of ATP7B mutations.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , Degeneración Hepatolenticular/genética , Fallo Hepático Agudo/genética , Hígado/metabolismo , Mutación , Adolescente , Enfermedades Asintomáticas , Biomarcadores/sangre , Ceruloplasmina/metabolismo , Niño , Preescolar , China , Cobre/orina , Análisis Mutacional de ADN , Femenino , Expresión Génica , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/mortalidad , Degeneración Hepatolenticular/patología , Humanos , Hígado/patología , Fallo Hepático Agudo/diagnóstico , Fallo Hepático Agudo/mortalidad , Fallo Hepático Agudo/patología , Masculino , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Transaminasas/sangre
10.
Prenat Diagn ; 38(10): 779-787, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29966168

RESUMEN

OBJECTIVE: To report the 4-year experience of early prenatal diagnosis of lysosomal storage disorders (LSDs) at a center in mainland China. METHOD: Forty-seven pregnancies affected with LSDs were assed using enzymes and/or molecular studies. Prenatal studies were performed on 43 uncultured chorionic villi (CV) samples, two amniotic fluid samples, and two umbilical cord blood samples. RESULTS: Of the 47 fetuses, 23 (48.9%) were determined to normal, 13 (27.7%) to be carriers, and 11 (23.4%) diagnosed as affected. In this cohort, mucopolysaccharidoses (MPS) type II was the most common LSD, followed by Pompe disease and then metachromatic leucodystrophy. In the 17 MPS II cases, the four affected fetuses showed MPS II enzyme activity expression levels of 1.4% to 6.7%, while the enzyme activity levels of the 13 normal fetuses ranged from 72% to 240.4%. In the seven Pompe cases, three fetuses were normal with Pompe enzyme activity expression levels of 20%, 38.8%, and 77.3%, while four carrier pregnancies showed enzyme activity levels of 17.5%, 17.5%, 33.4%, and 13.8%, respectively. CONCLUSION: Based on different enzyme properties in uncultured CV, different prenatal diagnostic strategies should be adopted for MPS II and Pompe disease. Combining enzyme assay and molecular studies in uncultured CV improves the reliability of prenatal diagnosis of LSDs.


Asunto(s)
Muestra de la Vellosidad Coriónica/estadística & datos numéricos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Adulto , Femenino , Humanos , Enfermedades por Almacenamiento Lisosomal/enzimología , Embarazo , Adulto Joven
11.
J Cell Biochem ; 119(5): 4170-4183, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29315755

RESUMEN

Better understanding of metastasis process would allow for the development of effective approaches to treat hepatocellular carcinoma (HCC). Recent literature has highlighted the fundamental role of interaction between tumor cells and their microenvironment components in tumor metastasis. Aberrant expression of epidermal growth factor (EGF) induces highly malignant HCC, and activated EGF/EGFR signaling is correlated with an aggressive phenotype and intrahepatic metastasis. Thus, EGF in the tumor microenvironment may influence the behavior of HCC cells. In this study, for the first time, we studied the expression of EGF in HCCs, and the potential role of EGF in the motility of HCC cells and the underlying mechanisms. It was demonstrated that EGF was highly expressed in HCCs and positively associated with higher tumor grade. In addition, EGF promoted the migration and invasion of HCC cells mainly via induction of fibronectin (FN) in vitro. Mechanistically, EGF simultaneously increased the nuclear translocation and PKC mediated phosphorylation of p65 which could bind to the -356 bp to -259 bp fragment of FN promoter, leading to a markedly increased activity of FN promoter in HCC cells. These results highlight the potential role of EGF in promoting HCC metastasis, demonstrate a novel pathway for regulation of FN expression and provide potential targets for HCC prevention and treatment.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Factor de Crecimiento Epidérmico/biosíntesis , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Factor de Crecimiento Epidérmico/genética , Fibronectinas/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/genética
12.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2568-2582, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28844984

RESUMEN

BACKGROUND: The interaction between hepatocellular carcinoma (HCC) cells and their microenvironment plays a fundamental role in tumor metastasis. The HCC microenvironment is rich in epidermal growth factor (EGF) and tumor necrosis factor α (TNFα), which may cooperatively, rather than individually, interact with tumor cells to influence their biological behavior. METHODS: Immunohistochemistry was performed to study the expression of EGF and TNFα in HCCs. Western blotting, immunofluorescence, qRT-PCR, wound healing scratch and invasion assay, and chromatin immunoprecipitation assays were used to study the combined roles of EGF and TNFα in the motility of HCC cells in vitro. RESULTS: We demonstrated that both EGF and TNFα were highly expressed in HCCs, and HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. In vitro, EGF and TNFα cooperatively promoted the motility of HCC cells mainly via synergistic induction of an extracellular matrix glycoprotein fibronectin (FN). Mechanistically, EGF and TNFα jointly increased the nuclear translocation and PKC mediated phosphorylation of NF-κB/p65 which could bind to the -356bp to -259bp fragment of the FN promoter, leading to a markedly increased activity of the FN promoter in HCC cells. CONCLUSIONS: HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. EGF and TNFα cooperatively promoted the motility of HCC cells mainly through NF-κB/p65 mediated synergistic induction of FN in vitro. GENERAL SIGNIFICANCE: These findings highlight the crosstalk between EGF and TNFα in promoting HCC, and provide potential targets for HCC prevention and treatment.


Asunto(s)
Carcinoma Hepatocelular/genética , Factor de Crecimiento Epidérmico/genética , Fibronectinas/biosíntesis , Neoplasias Hepáticas/genética , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , FN-kappa B/genética , Fosforilación
13.
J Cell Mol Med ; 21(5): 860-870, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28165192

RESUMEN

Natural killer (NK) cells play an important role in preventing cancer development. NK group 2 member D (NKG2D) is an activating receptor expressed in the membrane of NK cells. Tumour cells expressing NKG2DL become susceptible to an immune-dependent rejection mainly mediated by NK cells. The paradoxical roles of transforming growth factor beta (TGF-ß) in regulation of NKG2DL are presented in many studies, but the mechanism is unclear. In this study, we showed that TGF-ß up-regulated the expression of NKG2DLs in both PC3 and HepG2 cells. The up-regulation of NKG2DLs was characterized by increasing the expression of UL16-binding proteins (ULBPs) 1 and 2. TGF-ß treatment also increased the expression of transcription factor SP1. Knockdown of SP1 significantly attenuated TGF-ß-induced up-regulation of NKG2DLs in PC3 and HepG2 cells, suggesting that SP1 plays a key role in TGF-ß-induced up-regulation of NKG2DLs. TGF-ß treatment rapidly increased SP1 protein expression while not mRNA level. It might be due to that TGF-ß can elevate SP1 stability by activating PI3K/AKT signalling pathway, subsequently inhibiting GSK-3ß activity and decreasing the association between SP1 and GSK-3ß. Knockdown of GSK-3ß further verified our findings. Taken together, these results revealed that AKT/GSK-3ß-mediated stabilization of SP1 is required for TGF-ß induced up-regulation of NKG2DLs. Our study provided valuable evidence for exploring the tumour immune modulation function of TGF-ß.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Similares a Lectina de Células NK/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/efectos de los fármacos , Células Hep G2 , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Cancer Immunol Immunother ; 66(3): 355-366, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27915371

RESUMEN

Myeloid-derived suppressor cells (MDSC) have been identified as a population of immature myeloid cells that suppress anti-tumor immunity. MDSC are increased in tumor-bearing hosts; thus, depletion of MDSC may enhance anti-tumor immunity. Histone deacetylase inhibitors (HDACi) are chemical agents that are primarily used against hematologic malignancies. The ability of these agents to modulate anticancer immunity has recently been extensively studied. However, the effect of HDACi on MDSC has remained largely unexplored. In the present study, we provide the first demonstration that HDACi treatment decreases MDSC accumulation in the spleen, blood and tumor bed but increases the proportion of T cells (particularly the frequency of IFN-γ- or perforin-producing CD8+ T cells) in BALB/C mice with 4T1 mammary tumors. In addition, HDACi exposure of bone marrow (BM) cells significantly eliminated the MDSC population induced by GM-CSF or the tumor burden in vitro, which was further demonstrated as functionally important to relieve the inhibitory effect of MDSC-enriched BM cells on T cell proliferation. Mechanistically, HDACi increased the apoptosis of Gr-1+ cells (almost MDSC) compared with that of Gr-1- cells, which was abrogated by the ROS scavenger N-acetylcysteine, suggesting that the HDACi-induced increase in MDSC apoptosis due to increased intracellular ROS might partially account for the observed depletion of MDSC. These findings suggest that the elimination of MDSC using an HDACi may contribute to the overall anti-tumor properties of these agents, highlighting a novel property of HDACi as potent MDSC-targeting agents, which may be used to enhance the efficacy of immunotherapeutic regimens.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Células Supresoras de Origen Mieloide/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/patología
15.
Oxid Med Cell Longev ; 2016: 5874127, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27057280

RESUMEN

Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp) and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC) HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3ß mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3ß. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3ß/Snail signals, which suggested a potential therapeutic approach to CRC patients.


Asunto(s)
Quimiocina CCL21/farmacología , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Mol Immunol ; 65(1): 34-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25618241

RESUMEN

Human leukocyte antigen class I antigens (HLA-I) is essential in immune response by presenting antigenic peptides to cytotoxic T lymphocytes. Downregulation of HLA-I is observed in primary and metastatic prostate cancers, which facilitates them escape from immune surveillance, thereby promotes prostate cancer progression. In addition, elevated level of growth factors like TGF-ß or EGF in microenvironment is related to the prostate cancer deterioration. Thus, we wondered whether TGF-ß or EGF was involved in the regulation of HLA-I during the development of prostate cancer cells. In this study, we demonstrated that TGF-ß and EGF both downregulated the expression of HLA-I, thereby attenuated the cytotoxic T cell mediated lysis of prostate cancer cells. Next, we revealed that TGF-ß and EGF induced downregulation of HLA-I is associated with classical epithelial-mesenchymal transition (EMT) morphological changes and expression profiles. We further illustrated that overexpression of Snail is crucial for HLA-I downregulation and its association with EMT. At last, we discussed that NF-κB/p65 is the plausible target for Snail to induce HLA-I downregulation. Taken together, this is the first evidence to reveal that both TGF-ß and EGF can induce HLA-I downregulation which is then proven to be associated with EMT in prostate cancer cells. These discoveries provide a deeper understanding of growth factors induced immune escape and introduce potential therapeutic targets for prostate cancers.


Asunto(s)
Factor de Crecimiento Epidérmico/inmunología , Transición Epitelial-Mesenquimal/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Neoplasias de la Próstata/inmunología , Factor de Crecimiento Transformador beta/inmunología , Línea Celular Tumoral , Regulación hacia Abajo , Factor de Crecimiento Epidérmico/biosíntesis , Humanos , Masculino , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción de la Familia Snail , Linfocitos T Citotóxicos/inmunología , Factor de Transcripción ReIA/genética , Factores de Transcripción/biosíntesis , Transcripción Genética/genética , Factor de Crecimiento Transformador beta/biosíntesis , Escape del Tumor/inmunología , Regulación hacia Arriba
17.
Int J Clin Exp Med ; 8(11): 20227-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26884935

RESUMEN

Cancer is a global and growing problem. Nodal, which has been showed to be involved in occurrence and development of cancers, is an important embryonic morphogen. The aim of this study was to evaluate the significance of Nodal expression in human cancers based on the published related articles. Online databases were searched to retrieve relevant articles published between 2000 and 2015. The odds ratio (OR) with its 95% confident intervals (CI) were employed to calculate the strength of significance. Finally, a total of 11 articles were screened out, including 801 cancer patients and 372 healthy controls. Nine kinds of cancers were contained, and Nodal was detected in 56.7% of all participants (665/1173). Overall, our result found that Nodal was highly expressed in cancer patients than that in healthy controls, indicating that Nodal expression was significantly associated with cancers progression (OR=21.72, 95% CI=9.94-47.46, P<0.00001). Subgroup analysis showed that Nodal expression was significantly corrected with high WHO grade of human cancers (III+IV versus I+II: OR=2.46, 95% CI=1.63-3.71, P<0.00001). This significant relationship was also found in tumor size, differentiation degree, not observed in gender, age and lymphatic metastasis status of patients with all studied cancers in this meta-analysis. In conclusion, our results demonstrated that Nodal might be implicated in cancer progression, suggesting that it was a potential biomarker and therapeutic target for cancers.

18.
Biochim Biophys Acta ; 1840(10): 3096-105, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25088797

RESUMEN

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of metastatic cancers. Basic fibroblast growth factor (bFGF) is significantly elevated in metastatic prostate cancers, which has been mentioned mainly to induce EMT in normal cells. However, there is no description about bFGF induced EMT and its underlying mechanism in prostate cancer cells. METHODS: Western blotting, immunofluorescence and qRT-PCR assays were used to study protein or mRNA expression profiles of the EMT. Wound healing scratch, migration and invasion assays were used to test the motility of cells undergoing EMT. More methods were used to explore the underlying mechanisms. RESULTS: We demonstrated that bFGF promoted EMT and motility of human prostate cancer PC-3 cells. Both protein and mRNA expression of Snail were rapidly increased after bFGF treatment. Ectopic expression of Snail triggered EMT and enhanced cell motility in PC-3 cells, and knockdown of Snail almost abolished bFGF induced EMT, suggesting the critical role of Snail. Mechanistic study demonstrated that bFGF promoted the stability, nuclear localization and transcription of Snail by inhibiting the activity of glycogen synthase kinase 3 beta (GSK-3ß) through phosphatidylinositide 3 kinases (PI3K)/protein kinase B (AKT) signaling pathway. CONCLUSIONS: It is concluded that bFGF can promote EMT and motility of PC-3 cells, and AKT/GSK-3ß signaling pathway controls the stability, localization and transcription of Snail which is crucial for this bFGF induced EMT. GENERAL SIGNIFICANCE: To our knowledge, this is the first study to demonstrate that bFGF can induce EMT via AKT/GSK-3ß/Snail signaling pathway in prostate cancer cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/biosíntesis , Línea Celular Tumoral , Movimiento Celular/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
19.
Cell Tissue Res ; 358(2): 491-502, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25124796

RESUMEN

Cancer metastasis is considered a major challenge in cancer therapy. Recently, epidermal growth factor (EGF)/epidermal growth factor receptor (EGFR) signaling has been shown to induce epithelial-mesenchymal transition (EMT) and thereby to promote cancer metastasis. However, the underlying mechanism has not been fully elucidated. We demonstrate that EGF can induce EMT in human prostate and lung cancer cells and thus promote invasion and migration. EGF-induced EMT has been characterized by the cells acquiring mesenchymal spindle-like morphology and increasing their expression of N-cadherin and fibronectin, with a concomitant decrease of E-cadherin. Both protein and mRNA expression of transcription factor Snail rapidly increases after EGF treatment. The knockdown of Snail significantly attenuates EGF-induced EMT, suggesting that Snail is crucial for this process. To determine the way that Snail is accumulated, we demonstrate (1) that EGF promotes the stability of Snail via inhibiting the activity of glycogen synthase kinase 3 beta (GSK-3ß), (2) that protein kinase C (PKC) rather than the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is responsible for GSK-3ß inhibition and (3) that GSK-3ß inhibition promotes the transcription of Snail. Taken together, these results reveal that the PKC/GSK-3ß signaling pathway controls both the stability and transcription of Snail, which is crucial for EMT induced by EGF in PC-3 and A549 cells. Our study suggests a novel signaling pathway for Snail regulation and provides a better understanding of growth-factor-induced tumor EMT and metastasis.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias/patología , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Invasividad Neoplásica , Neoplasias/enzimología , Neoplasias/genética , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
20.
Cytotherapy ; 16(9): 1207-19, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108650

RESUMEN

BACKGROUND AIMS: Acute liver failure (ALF), a life-threatening disease characterized by the sudden loss of hepatic function, can occur after an accidental or intentional acetaminophen overdose. METHODS: With the use of an ALF mouse model, we examined both the preventive and therapeutic potential of intravenously administered human umbilical cord-derived mesenchymal stromal cells (hUCMSCs). Primary hUCMSCs were purified from freshly collected full-term umbilical cords and intravenously transplanted into BALB/c mice either before and after ALF induced by acetaminophen intoxication. We found that hUCMSCs significantly improved survival rates and relative liver weight of mice in both pre-ALF and post-ALF animals. Correspondingly, serum levels of markers that reflect hepatic injury (ie, aspartate aminotransferase, alanine aminotransferase and total bilirubin) were significantly attenuated in the group receiving hUCMSC therapy. RESULTS: Mechanistically, we found that the protective potential of intravenously administered hUCMSCs was mediated by paracrine pathways that involved antioxidants (glutathione, superoxide dismutase), the reduction of inflammatory agents (tumor necrosis factor-α, interleukin-6) and elevated serum levels of hepatocyte growth factor. CONCLUSIONS: Through these paracrine effects, intravenously administered hUCMSCs reduced hepatic necrosis/apoptosis and enhanced liver regeneration. Thus, our data demonstrate that intravenously administered hUCMSCs may be useful in the prevention or treatment of acetaminophen-induced ALF.


Asunto(s)
Acetaminofén/toxicidad , Fallo Hepático Agudo/terapia , Hígado/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Acetaminofén/administración & dosificación , Administración Intravenosa , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Bilirrubina/sangre , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Fallo Hepático Agudo/inducido químicamente , Masculino , Ratones Endogámicos BALB C , Cordón Umbilical/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA