Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Cell Host Microbe ; 32(2): 156-161.e3, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38211584

RESUMEN

T cells are critical in mediating the early control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection. However, it remains unknown whether memory T cells can effectively cross-recognize new SARS-CoV-2 variants with a broad array of mutations, such as the emergent hypermutated BA.2.86 variant. Here, we report in two separate cohorts, including healthy controls and individuals with chronic lymphocytic leukemia, that SARS-CoV-2 spike-specific CD4+ and CD8+ T cells induced by prior infection or vaccination demonstrate resilient immune recognition of BA.2.86. In both cohorts, we found largely preserved SARS-CoV-2 spike-specific CD4+ and CD8+ T cell magnitudes against mutated spike epitopes of BA.2.86. Functional analysis confirmed that both cytokine expression and proliferative capacity of SARS-CoV-2 spike-specific T cells to BA.2.86-mutated spike epitopes are similarly sustained. In summary, our findings indicate that memory CD4+ and CD8+ T cells continue to provide cell-mediated immune recognition to highly mutated emerging variants such as BA.2.86.


Asunto(s)
COVID-19 , Células T de Memoria , Humanos , Linfocitos T CD8-positivos , SARS-CoV-2/genética , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales
3.
J Hematol ; 12(4): 170-175, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37692865

RESUMEN

Background: Patients with chronic lymphocytic leukemia (CLL) are vulnerable to coronavirus disease 2019 (COVID-19) and are at risk of inferior response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, especially if treated with the first-generation Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib. We aimed to evaluate the impact of the third-generation BTKi, zanubrutinib, on systemic and mucosal response to SARS-CoV-2 vaccination. Methods: Nine patients with CLL with ongoing zanubrutinib therapy were included and donated blood and saliva during SARS-CoV-2 vaccination, before vaccine doses 3 and 5 and 2 - 3 weeks after doses 3, 4, and 5. Ibrutinib-treated control patients (n = 7) and healthy aged-matched controls (n = 7) gave blood 2 - 3 weeks after vaccine dose 5. We quantified reactivity and neutralization capacity of SARS-CoV-2-specific IgG and IgA antibodies (Abs) in both serum and saliva, and reactivity of T cells activated with viral peptides. Results: Both zanubrutinib- and ibrutinib-treated patients had significantly, up to 1,000-fold, lower total spike-specific Ab levels after dose 5 compared to healthy controls (P < 0.01). Spike-IgG levels in serum from zanubrutinib-treated patients correlated well to neutralization capacity (r = 0.68; P < 0.0001) and were thus functional. Mucosal immunity (specific IgA in serum and saliva) was practically absent in zanubrutinib-treated patients even after five vaccine doses, whereas healthy controls had significantly higher levels (tested in serum after vaccine dose 5) (P < 0.05). In contrast, T-cell reactivity against SARS-CoV-2 peptides was equally high in zanubrutinib- and ibrutinib-treated patients as in healthy control donors. Conclusions: In our small cohort of zanubrutinib-treated CLL patients, we conclude that up to five doses of SARS-CoV-2 vaccination induced no detectable IgA mucosal immunity, which likely will impair the primary barrier defence against the infection. Systemic IgG responses were also impaired, whereas T-cell responses were normal. Further and larger studies are needed to evaluate the impact of these findings on disease protection.

4.
Eur J Immunol ; 53(11): e2350465, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37526136

RESUMEN

Natural killer (NK) cells are innate lymphocytes that participate in immune responses against virus-infected cells and tumors. As a countermeasure, viruses and tumors employ strategies to evade NK-cell-mediated immunosurveillance. In this review, we examine immune evasion strategies employed by viruses, focusing on examples from human CMV and severe acute respiratory syndrome coronavirus 2. We explore selected viral evasion mechanisms categorized into three classes: (1) providing ligands for the inhibitory receptor NKG2A, (2) downregulating ligands for the activating receptor NKG2D, and (3) inducing the immunosuppressive cytokine transforming growth factor (TGF)-ß. For each class, we draw parallels between immune evasion by viruses and tumors, reviewing potential opportunities for overcoming evasion in cancer therapy. We suggest that in-depth investigations of host-pathogen interactions between viruses and NK cells will not only deepen our understanding of viral immune evasion but also shed light on how NK cells counter such evasion attempts. Thus, due to the parallels of immune evasion by viruses and tumors, we propose that insights gained from antiviral NK-cell responses may serve as valuable lessons that can be leveraged for designing future cancer immunotherapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Humanos , Monitorización Inmunológica , Evasión Inmune , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia
5.
Oncoimmunology ; 12(1): 2233402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448786

RESUMEN

Lung cancer is a leading cause of cancer-related death worldwide. Despite recent advances in tissue immunology, little is known about the spatial distribution of tissue-resident lymphocyte subsets in lung tumors. Using high-parameter flow cytometry, we identified an accumulation of tissue-resident lymphocytes including tissue-resident NK (trNK) cells and CD8+ tissue-resident memory T (TRM) cells toward the center of human non-small cell lung carcinomas (NSCLC). Chemokine receptor expression patterns indicated different modes of tumor-infiltration and/or residency between trNK cells and CD8+ TRM cells. In contrast to CD8+ TRM cells, trNK cells and ILCs generally expressed low levels of immune checkpoint receptors independent of location in the tumor. Additionally, granzyme expression in trNK cells and CD8+ TRM cells was highest in the tumor center, and intratumoral CD49a+CD16- NK cells were functional and responded stronger to target cell stimulation than their CD49a- counterparts, indicating functional relevance of trNK cells in lung tumors. In summary, the present spatial mapping of lymphocyte subsets in human NSCLC provides novel insights into the composition and functionality of tissue-resident immune cells, suggesting a role for trNK cells and CD8+ TRM cells in lung tumors and their potential relevance for future therapeutic approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Inmunidad Innata , Integrina alfa1/metabolismo , Células Asesinas Naturales/metabolismo
6.
EBioMedicine ; 94: 104700, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37453361

RESUMEN

BACKGROUND: Immunocompromised patients have varying responses to SARS-CoV-2 mRNA vaccination. However, there is limited information available from prospective clinical trial cohorts with respect to long-term immunogenicity-related responses in these patient groups following three or four vaccine doses, and in applicable cases infection. METHODS: In a real-world setting, we assessed the long-term immunogenicity-related responses in patients with primary and secondary immunodeficiencies from the prospective open-label clinical trial COVAXID. The original clinical trial protocol included two vaccine doses given on days 0 and 21, with antibody titres measured at six different timepoints over six months. The study cohort has subsequently been followed for one year with antibody responses evaluated in relation to the third and fourth vaccine dose, and in applicable cases SARS-CoV-2 infection. In total 356/539 patients were included in the extended cohort. Blood samples were analysed for binding antibody titres and neutralisation against the Spike protein for all SARS-CoV-2 variants prevailing during the study period, including Omicron subvariants. SARS-CoV-2 infections that did not require hospital care were recorded through quarterly in-person, or phone-, interviews and assessment of IgG antibody titres against SARS-CoV-2 Nucleocapsid. The original clinical trial was registered in EudraCT (2021-000175-37) and clinicaltrials.gov (NCT04780659). FINDINGS: The third vaccine dose significantly increased Spike IgG titres against all the SARS-CoV-2 variants analysed in all immunocompromised patient groups. Similarly, neutralisation also increased against all variants studied, except for Omicron. Omicron-specific neutralisation, however, increased after a fourth dose as well as after three doses and infection in many of the patient subgroups. Noteworthy, however, while many patient groups mounted strong serological responses after three and four vaccine doses, comparably weak responders were found among patient subgroups with specific primary immunodeficiencies and subgroups with immunosuppressive medication. INTERPRETATION: The study identifies particularly affected patient groups in terms of development of long-term immunity among a larger group of immunocompromised patients. In particular, the results highlight poor vaccine-elicited neutralising responses towards Omicron subvariants in specific subgroups. The results provide additional knowledge of relevance for future vaccination strategies. FUNDING: The present studies were supported by grants from the Swedish Research Council, the Knut and Alice Wallenberg Foundation, Nordstjernan AB, Region Stockholm, and Karolinska Institutet.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Estudios de Seguimiento , Huésped Inmunocomprometido , Estudios Prospectivos , ARN Mensajero , Vacunación
7.
Cytotherapy ; 25(7): 763-772, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37055320

RESUMEN

BACKGROUND AIMS: Adoptive cell therapy with chimeric antigen receptor (CAR)-expressing natural killer (NK) cells is an emerging approach that holds promise in multiple myeloma (MM). However, the generation of CAR-NK cells targeting CD38 is met with obstacles due to the expression of CD38 on NK cells. Knock-out of CD38 is currently explored as a strategy, although the consequences of the lack of CD38 expression with regards to engraftment and activity in the bone marrow microenvironment are not fully elucidated. Here, we present an alternative approach by harnessing the CD38dim phenotype occurring during long-term cytokine stimulation of primary NK cells. METHODS: Primary NK cells were expanded from peripheral blood mononuclear cells by long-term IL-2 stimulation. During expansion, the CD38 expression was monitored in order to identify a time point when introduction of a novel affinity-optimized αCD38-CAR confered optimal viability, i.e. prevented fratricide. CD38dim NK cells were trasduced with retroviral vectors encoding for the CAR trasngene and their functionality was assessed in in vitro activation and cytotoxicity assays. RESULTS: We verified the functionality of the αCD38-CAR-NK cells against CD38+ cell lines and primary MM cells. Importantly, we demonstrated that αCD38-CAR-NK cells derived from patients with MM have increased activity against autologous MM samples ex vivo. CONCLUSIONS: Overall, our results highlight that incorporation of a functional αCD38-CAR construct into a suitable NK-cell expansion and activation protocol results in a potent and feasible immunotherapeutic strategy for the treatment of patients with MM.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Citocinas/metabolismo , Mieloma Múltiple/terapia , Leucocitos Mononucleares/metabolismo , Células Asesinas Naturales , Fenotipo , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Microambiente Tumoral
8.
Proc Natl Acad Sci U S A ; 120(12): e2220320120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917669

RESUMEN

Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (ß-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Preescolar , Adulto , Niño , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , SARS-CoV-2 , Linfocitos T , Herpesvirus Humano 4 , Linfocitos T CD4-Positivos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Reacciones Cruzadas
9.
Cancer Immunol Immunother ; 72(5): 1153-1167, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36355079

RESUMEN

Multiple myeloma (MM) is an incurable hematological cancer, in which immune checkpoint inhibition (ICI) with monoclonal antibodies (mAbs) has failed due to uncontrollable immune responses in combination therapies and lack of efficacy in monotherapies. Although NK cell-specific checkpoint targets such as NKG2A and KIRs are currently being evaluated in clinical trials, the clinical impact of NK cells on the PD1 cascade is less well understood compared to T cells. Furthermore, while NK cells have effector activity within the TME, under continuous ligand exposure, NK cell dysfunctionality may occur due to interaction of PD1 and its ligand PD-L1. Due to above-mentioned factors, we designed novel NK cell specific PD1-based chimeric switch receptors (PD1-CSR) by employing signaling domains of DAP10, DAP12 and CD3ζ to revert NK cell inhibition and retarget ICI. PD1-CSR modified NK cells showed increased degranulation, cytokine secretion and cytotoxicity upon recognition of PD-L1+ target cells. Additionally, PD1-CSR+ NK cells infiltrated and killed tumor spheroids. While primary NK cells (pNK), expressing native PD1, showed decreased degranulation and cytokine production against PD-L1+ target cells by twofold, PD1-CSR+ pNK cells demonstrated increased activity upon PD-L1+ target cell recognition and enhanced antibody-dependent cellular cytotoxicity. PD1-CSR+ pNK cells from patients with MM increased degranulation and cytokine expression against autologous CD138+PD-L1+ malignant plasma cells. Taken together, the present results demonstrate that PD1-CSR+ NK cells enhance and sustain potent anti-tumor activity in a PD-L1+ microenvironment and thus represent a promising strategy to advance adoptive NK cell-based immunotherapies toward PD-L1+ cancers.


Asunto(s)
Antígeno B7-H1 , Mieloma Múltiple , Humanos , Antígeno B7-H1/metabolismo , Ligandos , Células Asesinas Naturales , Citocinas/metabolismo , Receptores de Células Asesinas Naturales/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
10.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36319065

RESUMEN

BACKGROUND: Natural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML). Current treatments are hampered by variability in NK cell subset responses, a limitation which could be circumvented by specific expansion of highly potent single killer immunoglobulin-like receptor (KIR)+NKG2C+ adaptive NK cells to maximize missing-self reactivity. METHODS: We developed a GMP-compliant protocol to expand adaptive NK cells from cryopreserved cells derived from select third-party superdonors, that is, donors harboring large adaptive NK cell subsets with desired KIR specificities at baseline. We studied the adaptive state of the cell product (ADAPT-NK) by flow cytometry and mass cytometry as well as cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq). We investigated the functional responses of ADAPT-NK cells against a wide range of tumor target cell lines and primary AML samples using flow cytometry and IncuCyte as well as in a mouse model of AML. RESULTS: ADAPT-NK cells were >90% pure with a homogeneous expression of a single self-HLA specific KIR and expanded a median of 470-fold. The ADAPT-NK cells largely retained their adaptive transcriptional signature with activation of effector programs without signs of exhaustion. ADAPT-NK cells showed high degranulation capacity and efficient killing of HLA-C/KIR mismatched tumor cell lines as well as primary leukemic blasts from AML patients. Finally, the expanded adaptive NK cells had preserved robust antibody-dependent cellular cytotoxicity potential and combination of ADAPT-NK cells with an anti-CD16/IL-15/anti-CD33 tri-specific engager led to near-complete killing of resistant CD45dim blast subtypes. CONCLUSIONS: These preclinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered, yet highly specific, NK cell population with full missing-self recognition capability.


Asunto(s)
Citotoxicidad Inmunológica , Leucemia Mieloide Aguda , Animales , Ratones , Citotoxicidad Celular Dependiente de Anticuerpos , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/patología , Receptores KIR/metabolismo
12.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35961317

RESUMEN

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Humanos , Inmunidad Humoral , ARN Mensajero/genética , Síndrome , Vacunación , Proteínas del Envoltorio Viral
13.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235832

RESUMEN

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Asunto(s)
COVID-19 , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Metiltransferasas , Subfamília C de Receptores Similares a Lectina de Células NK , ARN Helicasas , SARS-CoV-2 , Proteínas no Estructurales Virales , COVID-19/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/inmunología , Metiltransferasas/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Péptidos/metabolismo , ARN Helicasas/inmunología , Proteínas no Estructurales Virales/inmunología , Antígenos HLA-E
14.
Cell Rep Med ; 3(2): 100508, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35243416

RESUMEN

Few approaches have been made toward exploring autologous NK cells in settings of cancer immunotherapy. Here, we demonstrate the feasibility of infusing multiple doses of ex vivo activated and expanded autologous NK cells in patients with multiple myeloma (MM) post-autologous stem cell transplantation. Infused NK cells were detected in circulation up to 4 weeks after the last infusion. Elevations in plasma granzyme B levels were observed following each consecutive NK cell infusion. Moreover, increased granzyme B levels were detected in bone marrow 4 weeks after the last infusion. All measurable patients had objective, detectable responses after NK cell infusions in terms of reduction in M-component and/or minimal residual disease. The present study demonstrates that autologous NK cell-based immunotherapy is feasible in a setting of MM consolidation therapy. It opens up the possibility for usage of autologous NK cells in clinical settings where patients are not readily eligible for allogeneic NK cell-based immunotherapies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Quimioterapia de Consolidación , Granzimas , Humanos , Células Asesinas Naturales , Mieloma Múltiple/terapia , Trasplante de Células Madre , Trasplante Autólogo
15.
Mol Med ; 28(1): 20, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135470

RESUMEN

Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .


Asunto(s)
Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Huésped Inmunocomprometido/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Citometría de Flujo , Humanos , Células Asesinas Naturales/metabolismo , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Pandemias/prevención & control , SARS-CoV-2/fisiología , Vacunación/métodos , Vacunación/estadística & datos numéricos , Adulto Joven
17.
Med ; 3(2): 137-153.e3, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35075450

RESUMEN

BACKGROUND: Immunocompromised individuals are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Whether vaccine-induced immunity in these individuals involves oral cavity, a primary site of infection, is presently unknown. METHODS: Immunocompromised patients (n = 404) and healthy controls (n = 82) participated in a prospective clinical trial (NCT04780659) encompassing two doses of the mRNA BNT162b2 vaccine. Primary immunodeficiency (PID), secondary immunodeficiencies caused by human immunodeficiency virus (HIV) infection, allogeneic hematopoietic stem cell transplantation (HSCT)/chimeric antigen receptor T cell therapy (CAR-T), solid organ transplantation (SOT), and chronic lymphocytic leukemia (CLL) patients were included. Salivary and serum immunoglobulin G (IgG) reactivities to SARS-CoV-2 spike were measured by multiplex bead-based assays and Elecsys anti-SARS-CoV-2 S assay. FINDINGS: IgG responses to SARS-CoV-2 spike antigens in saliva in HIV and HSCT/CAR-T groups were comparable to those of healthy controls after vaccination. The PID, SOT, and CLL patients had weaker responses, influenced mainly by disease parameters or immunosuppressants. Salivary responses correlated remarkably well with specific IgG titers and the neutralizing capacity in serum. Receiver operating characteristic curve analysis for the predictive power of salivary IgG yielded area under the curve (AUC) = 0.95 and positive predictive value (PPV) = 90.7% for the entire cohort after vaccination. CONCLUSIONS: Saliva conveys vaccine responses induced by mRNA BNT162b2. The predictive power of salivary spike IgG makes it highly suitable for screening vulnerable groups for revaccination. FUNDING: Knut and Alice Wallenberg Foundation, Erling Perssons family foundation, Region Stockholm, Swedish Research Council, Karolinska Institutet, Swedish Blood Cancer Foundation, PID patient organization of Sweden, Nordstjernan AB, Center for Medical Innovation (CIMED), Swedish Medical Research Council, and Stockholm County Council (ALF).


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Huésped Inmunocomprometido , Inmunoglobulina A Secretora , Inmunoglobulina G , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Saliva , Seroconversión , Glicoproteína de la Espiga del Coronavirus
18.
EBioMedicine ; 74: 103705, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34861491

RESUMEN

BACKGROUND: Patients with immunocompromised disorders have mainly been excluded from clinical trials of vaccination against COVID-19. Thus, the aim of this prospective clinical trial was to investigate safety and efficacy of BNT162b2 mRNA vaccination in five selected groups of immunocompromised patients and healthy controls. METHODS: 539 study subjects (449 patients and 90 controls) were included. The patients had either primary (n=90), or secondary immunodeficiency disorders due to human immunodeficiency virus infection (n=90), allogeneic hematopoietic stem cell transplantation/CAR T cell therapy (n=90), solid organ transplantation (SOT) (n=89), or chronic lymphocytic leukemia (CLL) (n=90). The primary endpoint was seroconversion rate two weeks after the second dose. The secondary endpoints were safety and documented SARS-CoV-2 infection. FINDINGS: Adverse events were generally mild, but one case of fatal suspected unexpected serious adverse reaction occurred. 72.2% of the immunocompromised patients seroconverted compared to 100% of the controls (p=0.004). Lowest seroconversion rates were found in the SOT (43.4%) and CLL (63.3%) patient groups with observed negative impact of treatment with mycophenolate mofetil and ibrutinib, respectively. INTERPRETATION: The results showed that the mRNA BNT162b2 vaccine was safe in immunocompromised patients. Rate of seroconversion was substantially lower than in healthy controls, with a wide range of rates and antibody titres among predefined patient groups and subgroups. This clinical trial highlights the need for additional vaccine doses in certain immunocompromised patient groups to improve immunity. FUNDING: Knut and Alice Wallenberg Foundation, the Swedish Research Council, Nordstjernan AB, Region Stockholm, Karolinska Institutet, and organizations for PID/CLL-patients in Sweden.


Asunto(s)
Vacuna BNT162/efectos adversos , Vacuna BNT162/inmunología , Huésped Inmunocomprometido/inmunología , Inmunogenicidad Vacunal/inmunología , SARS-CoV-2/inmunología , Adenina/efectos adversos , Adenina/análogos & derivados , Adenina/uso terapéutico , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunoterapia Adoptiva , Leucemia Linfocítica Crónica de Células B , Masculino , Persona de Mediana Edad , Ácido Micofenólico/efectos adversos , Ácido Micofenólico/uso terapéutico , Trasplante de Órganos , Piperidinas/efectos adversos , Piperidinas/uso terapéutico , Enfermedades de Inmunodeficiencia Primaria/inmunología , Estudios Prospectivos , Seroconversión , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/efectos adversos , Eficacia de las Vacunas
19.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836578

RESUMEN

Human adaptive-like "memory" CD56dimCD16+ natural killer (NK) cells in peripheral blood from cytomegalovirus-seropositive individuals have been extensively investigated in recent years and are currently explored as a treatment strategy for hematological cancers. However, treatment of solid tumors remains limited due to insufficient NK cell tumor infiltration, and it is unknown whether large expansions of adaptive-like NK cells that are equipped for tissue residency and tumor homing exist in peripheral tissues. Here, we show that human lung and blood contains adaptive-like CD56brightCD16- NK cells with hallmarks of tissue residency, including expression of CD49a. Expansions of adaptive-like lung tissue-resident NK (trNK) cells were found to be present independently of adaptive-like CD56dimCD16+ NK cells and to be hyperresponsive toward target cells. Together, our data demonstrate that phenotypically, functionally, and developmentally distinct subsets of adaptive-like NK cells exist in human lung and blood. Given their tissue-related character and hyperresponsiveness, human lung adaptive-like trNK cells might represent a suitable alternative for therapies targeting solid tumors.


Asunto(s)
Células Asesinas Naturales/inmunología , Pulmón/inmunología , Adaptación Fisiológica/inmunología , Citometría de Flujo , Humanos , Inmunofenotipificación , Integrina alfa1/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia
20.
Cell Rep Med ; 2(3): 100220, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33763658

RESUMEN

Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Infecciones por Hantavirus/inmunología , Fiebre Hemorrágica con Síndrome Renal/inmunología , Activación de Linfocitos , Células T Invariantes Asociadas a Mucosa/inmunología , Virus Puumala/patogenicidad , Adulto , Anticuerpos Antivirales/sangre , Células Presentadoras de Antígenos/virología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/virología , Femenino , Regulación de la Expresión Génica , Infecciones por Hantavirus/genética , Infecciones por Hantavirus/patología , Infecciones por Hantavirus/virología , Fiebre Hemorrágica con Síndrome Renal/genética , Fiebre Hemorrágica con Síndrome Renal/patología , Fiebre Hemorrágica con Síndrome Renal/virología , Humanos , Inmunofenotipificación , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/virología , Células T Invariantes Asociadas a Mucosa/virología , Virus Puumala/inmunología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA