Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37515384

RESUMEN

The negative impact of nutritional deficits in the development of bronchopulmonary dysplasia is well recognized, yet mechanisms by which nutrition alters lung outcomes and nutritional strategies that optimize development and protect the lung remain elusive. Here, we use a rat model to assess the isolated effects of postnatal nutrition on lung structural development without concomitant lung injury. We hypothesize that postnatal growth restriction (PGR) impairs lung structure and function, critical mediators of lung development, and fatty acid profiles at postnatal day 21 in the rat. Rat pups were cross-fostered at birth to rat dams with litter sizes of 8 (control) or 16 (PGR). Lung structure and function, as well as serum and lung tissue fatty acids, and lung molecular mediators of development, were measured. Male and female PGR rat pups had thicker airspace walls, decreased lung compliance, and increased tissue damping. Male rats also had increased lung elastance, increased lung elastin protein abundance, and lysol oxidase expression, and increased elastic fiber deposition. Female rat lungs had increased conducting airway resistance and reduced levels of docosahexaenoic acid in lung tissue. We conclude that PGR impairs lung structure and function in both male and female rats, with sex-divergent changes in lung molecular mediators of development.

2.
Reprod Sci ; 27(2): 631-643, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32046449

RESUMEN

Maternal tobacco smoke exposure (MTS) affects fetal acquisition of long-chain polyunsaturated fatty acids (LCPUFA) and increases the risk of obesity and cardio-metabolic disease in the offspring. Alterations in fetal LCPUFA acquisition in maternal smoking are mediated by the placenta. The handling of LCPUFA by the placenta involves protein-mediated transfer and storage. Molecular mediators of placental LCPUFA handling include PPARγ and the fatty acid transport proteins. We previously demonstrated, in a rat model, that MTS results in programming of adult-onset obesity and metabolic disease in male, but not female, offspring. In this study, we test the hypothesis that in utero MTS exposure alters placental structure, placental LCPUFA handling, and fetal fatty acid levels, in a sex-divergent manner. We exposed pregnant rats to tobacco smoke from embryonic day 11 to term gestation. We measured placental and fetal fatty acid profiles, the systolic/diastolic ratio (SD ratio), placental histology, and expression of molecular mediators in the placenta. Our primary finding is that MTS alters fatty acid profiles in male, but not female fetuses and placenta, including increasing the ratio of omega-6 to omega-3 fatty acids. MTS also increased SD ratio in male, but not female placenta. In contrast, the expression of PPARγ and FATPs was upregulated in female, but not male placenta. We conclude that MTS causes sex-divergent changes in placental handling of LCPUFA in the rat. We speculate that our results demonstrate an adaptive response to MTS by the female placenta.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Exposición Materna/efectos adversos , Nicotiana/toxicidad , Placenta/efectos de los fármacos , Animales , Estradiol/metabolismo , Estriol/metabolismo , Femenino , Masculino , PPAR gamma/metabolismo , Placenta/metabolismo , Placenta/patología , Embarazo , Ratas Sprague-Dawley , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA