Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37415393

RESUMEN

AIM: The 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC) is approximately 11% and has only improved marginally over the last three decades. For operable PDAC, resection and adjuvant FOLFIRINOX chemotherapy is standard of care. There is growing interest in perioperative regimens to improve outcomes. The non-randomized Phase II study "Gemcitabine and Abraxane for resectable Pancreatic cancer" (GAP) demonstrated the feasibility of perioperative gemcitabine/abraxane. Long-term survival in PDAC requires an effective immune response; hence, we undertook this translational study of the GAP trial cohort to identify immune-oncology biomarkers for clinical use. METHODS: We combined Nanostring nCounter technology with immunohistochemistry to investigate the correlation between gene expression and overall patient survival. Findings were investigated in samples from the International Cancer Genome Consortium (ICGC, n = 88) and the Australian Pancreatic Genome Initiative (APGI, n = 227). RESULTS: We confirmed that human equilibrative nucleoside transporter 1 (hENT1) expression was not a prognostic marker in PDAC but patients with high levels of hENT1 were more likely to live longer than 24 months post-surgery. Additionally, CD274 (PD-L1) and two novel biomarkers of survival, cathepsin W (CTSW) and C-reactive protein (CRP), were identified in the GAP cohort (n = 19). CRP expression was confirmed in data from the ICGC. Although PD-L1 and CTSW proteins were not significant across all three cohorts, results show that low CRP mRNA and protein expression are associated with longer overall survival in all three patient groups. CONCLUSION: PDAC patients with long survival have higher hENT1 expression levels. Furthermore, CRP expression is a biomarker of poor prognosis following perioperative chemotherapy and resection in PDAC patients and thus may be useful for identifying patients who could benefit from more aggressive adjuvant strategies.

2.
Bioinform Adv ; 2(1): vbac005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699384

RESUMEN

Motivation: Changes in telomere length have been observed in cancer and can be indicative of mechanisms involved in carcinogenesis. Most methods used to estimate telomere length require laboratory analysis of DNA samples. Here, we present qmotif, a fast and easy tool that determines telomeric repeat sequences content as an estimate of telomere length directly from whole-genome sequencing. Results: qmotif shows similar results to quantitative PCR, the standard method for high-throughput clinical telomere length quantification. qmotif output correlates strongly with the output of other tools for determining telomere sequence content, TelSeq and TelomereHunter, but can run in a fraction of the time-usually under a minute. Availability and implementation: qmotif is implemented in Java and source code is available at https://github.com/AdamaJava/adamajava, with instructions on how to build and use the application available from https://adamajava.readthedocs.io/en/latest/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
BMC Med Genomics ; 12(1): 31, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717762

RESUMEN

BACKGROUND: Oesophageal adenocarcinoma (EAC) incidence is increasing and has a poor survival rate. Barrett's oesophagus (BE) is a precursor condition that is associated with EAC and often occurs in conjunction with chronic gastro-oesophageal reflux, however many individuals diagnosed with BE never progress to cancer. An understanding of the genomic features of BE and EAC may help with the early identification of at-risk individuals. METHODS: In this study, we assessed the genomic features of 16 BE samples using whole-genome sequencing. These included non-dysplastic samples collected at two time-points from two BE patients who had not progressed to EAC over several years. Seven other non-dysplastic samples and five dysplastic BE samples with high-grade dysplasia were also examined. We compared the genome profiles of these 16 BE samples with 22 EAC samples. RESULTS: We observed that samples from the two non-progressor individuals had low numbers of somatic single nucleotide variants, indels and structural variation events compared to dysplastic and the remaining non-dysplastic BE. EAC had the highest level of somatic genomic variations. Mutational signature 17, which is common in EAC, was also present in non-dysplastic and dysplastic BE, but was not present in the non-progressors. Many dysplastic samples had mutations in genes previously reported in EAC, whereas only mutations in CDKN2A or in the fragile site genes appeared common in non-dysplastic samples. Rearrangement signatures were used to identify a signature associated with localised complex events such as chromothripsis and breakage fusion-bridge that are characteristic of EACs. Two dysplastic BE samples had a high contribution of this signature and contained evidence of localised rearrangements. Two other dysplastic samples also had regions of localised structural rearrangements. There was no evidence for complex events in non-dysplastic samples. CONCLUSIONS: The presence of complex localised rearrangements in dysplastic samples indicates a need for further investigations into the role such events play in the progression from BE to EAC.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Esófago de Barrett/complicaciones , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Reordenamiento Génico , Adenocarcinoma/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Esofágicas/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Secuenciación Completa del Genoma
4.
Carcinogenesis ; 37(4): 356-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26905591

RESUMEN

The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival.


Asunto(s)
Adenocarcinoma/genética , Segregación Cromosómica , Metilación de ADN , Neoplasias Esofágicas/genética , Huso Acromático , Adenocarcinoma/patología , Neoplasias Esofágicas/patología , Humanos
5.
Nat Commun ; 5: 5224, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25351503

RESUMEN

Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n=40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Carcinogénesis/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Reordenamiento Génico/genética , Genoma Humano/genética , Carcinogénesis/patología , Rotura Cromosómica , Cromosomas Humanos/genética , Humanos , Mutación/genética
6.
Eur J Cancer ; 50(15): 2668-76, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070294

RESUMEN

BACKGROUND: 5-year survival for melanoma metastasis to regional lymph nodes (American Joint Committee on Cancer stage III) is <50%. Knowledge of outcomes following therapeutic lymphadenectomy for stage III melanoma related to BRAF status may guide adjuvant use of BRAF/MEK inhibitors along with established and future therapies. AIMS: To determine patterns of melanoma recurrence and survival following therapeutic lymph node dissection (TLND) associated with oncogenic mutations. METHODS: DNA was obtained from patients who underwent TLND and had ⩾2 positive nodes, largest node >3cm or extracapsular invasion. Mutations were detected using an extended Sequenom MelaCARTA panel. RESULTS: Mutations were most commonly detected in BRAF (57/124 [46%] patients) and NRAS (26/124 [21%] patients). Patients with BRAF mutations had higher 3-year recurrence rate (77%) versus 54% for BRAF wild-type patients (hazard ratio (HR) 1.8, p=0.008). The only prognostically significant mutations occurred in BRAF: median recurrence-free (RFS) and disease-specific survival (DSS) for BRAF mutation patients was 7 months and 16 months, versus 19 months and not reached for BRAF wild-type patients, respectively. Multivariate analysis identified BRAF mutant status and number of positive lymph nodes as the only independent prognostic factors for RFS and DSS. CONCLUSIONS: Patients with BRAF mutations experienced rapid progression of metastatic disease with locoregional recurrence rarely seen in isolation, supporting incorporation of BRAF status into melanoma staging and use of BRAF/MEK inhibitors post-TLND.


Asunto(s)
Melanoma/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia , Estimación de Kaplan-Meier , Escisión del Ganglio Linfático , Metástasis Linfática , Masculino , Melanoma/cirugía , Melanoma/terapia , Persona de Mediana Edad , Análisis Multivariante , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Pronóstico , Modelos de Riesgos Proporcionales , Proto-Oncogenes Mas , Radioterapia Adyuvante , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/terapia
7.
BMC Cancer ; 12: 252, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22708734

RESUMEN

BACKGROUND: While it is now more than a decade since the first description of the gene mutation underlying the tumour predisposition syndrome multiple endocrine neoplasia type 1 (MEN1), the mechanism by which its protein product menin acts to prevent development of tumours is still poorly understood. METHODS: We undertook a genetic experiment to assess whether menin synergises with p53. Mice carrying various combinations of Men1 and Trp53 mutations were generated then survival and pathology assessed. RESULTS: While homozygous loss of Trp53 in mice resulted in early onset, aggressive tumours and profoundly reduced lifespan, heterozygous loss of either Trp53 or Men1 caused later onset disease, with a spectrum of tumours characteristic of each tumour suppressor gene. Loss of one copy of Men1 in animals also lacking both alleles of Trp53 did not exacerbate phenotype, based on survival, animal weight or sites of pathology, compared to Trp53 deletion alone. Dual heterozygous deletion of Men1 and Trp53 resulted in a small reduction in lifespan compared to the individual mutations, without new tumour sites. In the adrenal, we observed development of cortical tumours in dual heterozygous animals, as we have previously seen in Men1+/- animals, and there was loss of heterozygosity at the Men1 allele in these tumours. Median number of pathology observations per animal was increased in dual heterozygous animals compared with heterozygous loss of Trp53 alone. CONCLUSIONS: Simultaneous heterozygous deletion of Men1 in animals with either heterozygous or homozygous deletion of Trp53 did not result in formation of tumours at any new sites, implying additive rather than synergistic effects of these pathways. Mice that were Men1+/- in addition to Trp53+/- had tumours in endocrine as well as other sites, implying that increase in total tumour burden, at sites typically associated with either Men1 or Trp53 loss, contributed to the slight decrease in survival in Men1+/-: Trp53+/- animals in comparison with their littermates.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasia Endocrina Múltiple Tipo 1/genética , Proteína p53 Supresora de Tumor/genética , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Animales , Peso Corporal , Transformación Celular Neoplásica/metabolismo , Genotipo , Ratones , Ratones Noqueados , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Mutación , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología , Páncreas/metabolismo , Páncreas/patología , Proteína p53 Supresora de Tumor/metabolismo
8.
Pancreas ; 39(8): 1140-6, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20531244

RESUMEN

OBJECTIVES: To identify gene expression alterations associated with insulinoma formation and progression in 2 mouse models of multiple endocrine neoplasia type 1. METHODS: Mice were killed at 12 or 16 months, and pancreatic islets were isolated by enzymatic and physical disruption. Islets were separated by size representing control, normal, hyperplastic, and adenomous islets. RNA was isolated from these islets and profiled on Sentrix Mouse-6 Expression version 1 BeadChips. Array data were analyzed in GeneSpring. RESULTS: One hundred and one genes that were significantly (P ≤ 0.05) altered in hyperplastic islets and insulinomas compared with normal islets were identified. Of these, 64 gene elements showed reduced messenger RNA levels and 37 gene elements had increased gene expression compared with control islets. Altered expression of 3 genes, namely, Gata6, Tspan8, and s100a8, was confirmed by quantitative reverse transcription-polymerase chain reaction, and aberrant levels of Tspan8 and Lmo2 protein measured by Western blot correlated with the changes in messenger RNA levels. CONCLUSIONS: These results suggest that alterations in gene expression of Gata6, Tspan8, S100a8, and Lmo2 may act via novel pathways that play functionally important roles in Men1-associated tumor progression.


Asunto(s)
Perfilación de la Expresión Génica , Insulinoma/genética , Neoplasia Endocrina Múltiple Tipo 1/genética , Neoplasias Pancreáticas/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Western Blotting , Calgranulina A/genética , Calgranulina A/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Femenino , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Humanos , Insulinoma/etiología , Insulinoma/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Proteínas con Dominio LIM , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasia Endocrina Múltiple Tipo 1/complicaciones , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tetraspaninas
9.
Int J Cancer ; 124(5): 1122-32, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19058182

RESUMEN

Heterozygous disruption of the Men1 gene predisposes mice to the development of multiple endocrine tumors, accurately mimicking the human MEN1 cancer predisposition syndrome. Additionally, Men1(+/-) mice frequently develop sex cord adenomas. The mechanism underlying the susceptibility of these mice to sex cord tumor development has not been fully determined, but data suggest it may involve transcriptional regulation of key growth promoting/repressing genes. To identify potential menin-regulated genes that may be important for tumor suppression in sex cord cells, we compared the global gene expression profiles of testis and ovary adenomas with other endocrine tumors of the pancreas and pituitary from Men1 heterozygous mice and with control tissues. Gonadal tumors clustered separately from pancreas and pituitary tumors with only a few genes (e.g., Cdkn2c) commonly dysregulated in all tumor types. Testis and ovary tumors displayed a higher level of transcriptional similarity to each other than they did to their respective control tissues. Among genes that had decreased expression in tumors was significant over-representation of genes associated with the TGF-beta, hedgehog and Wnt signaling, indicating that loss of menin function affects these pathways at the level of transcription. Aberrant protein expression in Leydig and granulosa cells of 2 transcriptionally dysregulated gene products, Gata6 and Csf1r were confirmed by immunohistochemistry. We propose that sex cord tumor susceptibility in Men1(+/-) mice involves deregulated cell proliferation due to dysregulation of multiple cell growth regulating genes including: reduced Cdkn2c transcription, loss of TGF-beta pathway tumor suppressor function (e.g., Gata6) and transcriptional activation of Csf1r.


Asunto(s)
Factor de Transcripción GATA6/análisis , Perfilación de la Expresión Génica , Proteínas Proto-Oncogénicas/fisiología , Receptor de Factor Estimulante de Colonias de Macrófagos/análisis , Tumores de los Cordones Sexuales y Estroma de las Gónadas/etiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Análisis por Conglomerados , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética
10.
Int J Cancer ; 121(4): 776-83, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17455252

RESUMEN

Although the identification of menin-interacting partners and other evidence support a role for menin, the multiple endocrine neoplasia type 1 gene (MEN1) product, in regulating gene expression, little is known about the cellular pathways dysregulated by menin loss during tumorigenesis. The mouse models of MEN1 accurately mimic the human syndrome and provide an opportunity to assess the transcriptional effects of Men1 deletion in different endocrine tumor types to identify common pathway aberrations underlying tumorigenesis in MEN1-affected tissues. We compared the global gene expression profiles of pituitary adenomas and pancreatic islet tumors with control tissues from wild-type littermates. Amongst the 551 differentially expressed genes was significant over-representation of genes associated with chromatin remodelling, transcription and cell cycling, including some genes known to encode menin-binding partners, e.g., Rhox5 and Mll1. Consistent with increased cell-cycle transition from G1 to S phase was an elevation of Cdc7 expression in the tumors, which was confirmed by qRT-PCR using independent samples. In support of previous findings in islet tumors, we found down-regulation of the cell-cycle regulator, p18, in both the pancreatic islet and pituitary adenomas, suggesting that reduced p18 levels may be important for Men1-related tumorigenesis in multiple tissues. Surprisingly, we identified increased p16 transcript in pancreatic islet and pituitary tumors. This was accompanied by increased cytoplasmic localization p16 protein in tumor cells. The specific genes and general pathways we have found to be commonly dysregulated in MEN1 tumors, provide a platform for determining their roles in endocrine tumorigenesis.


Asunto(s)
Ciclo Celular , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Neoplasias Experimentales/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Transcripción Genética , Animales , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Noqueados , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/genética , Neoplasias Hipofisarias/genética , Reproducibilidad de los Resultados
11.
Int J Cancer ; 120(2): 259-67, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17044021

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1) is an inherited cancer predisposition syndrome typified by development of tumors in parathyroid, pituitary and endocrine pancreas, as well as less common sites including both endocrine and nonendocrine organs. Deletion or mutation of the tumor suppressor gene MEN1 on chromosome 11 has been identified in many cases of MEN1 as well as in sporadic tumors. The molecular biology of menin, the protein encoded by MEN1, remains poorly understood. Here we describe a mouse model of MEN1 in which tumors were seen in pancreatic islets, pituitary, thyroid and parathyroid, adrenal glands, testes and ovaries. The observed tumor spectrum therefore includes types commonly seen in MEN1 patients and additional types. Pancreatic pathology was most common, evident in over 80% of animals, while other tumor types developed with lower frequency and generally later onset. Tumors of multiple endocrine organs were observed frequently, but progression to carcinoma and metastasis were not evident. Tumors in all sites showed loss of heterozygosity at the Men1 locus, though the frequency in testicular tumors was only 36%, indicating that a different molecular mechanism of tumorigenesis occurs in those Leydig tumors that do not show loss of the normal Men1 allele. Menin expression was below the level of detection in ovary, thyroid and testis, but loss of nuclear menin immunoreactivity was observed uniformly in all pancreatic islet adenomas and in some hyperplastic islet cells, suggesting that complete loss of Men1 is a critical point in islet tumor progression in this model.


Asunto(s)
Adenoma/patología , Modelos Animales de Enfermedad , Neoplasias de las Glándulas Endocrinas/patología , Ratones/genética , Neoplasia Endocrina Múltiple Tipo 1/patología , Proteínas Proto-Oncogénicas/genética , Adenoma/química , Adenoma/genética , Animales , ADN de Neoplasias/análisis , Neoplasias de las Glándulas Endocrinas/química , Neoplasias de las Glándulas Endocrinas/genética , Exones/genética , Femenino , Genes Supresores de Tumor , Masculino , Neoplasia Endocrina Múltiple Tipo 1/química , Neoplasia Endocrina Múltiple Tipo 1/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Proteínas Proto-Oncogénicas/análisis
12.
Mol Cell Biol ; 24(8): 3125-31, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15060136

RESUMEN

Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.


Asunto(s)
Silenciador del Gen , Insulinoma , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Páncreas/crecimiento & desarrollo , Neoplasias Pancreáticas , Hipófisis/crecimiento & desarrollo , Neoplasias Hipofisarias , Prolactinoma , Animales , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Exones , Femenino , Hiperplasia/patología , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patología , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasia Endocrina Múltiple Tipo 1/genética , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Hipófisis/metabolismo , Hipófisis/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactinoma/patología , Transgenes , Proteínas Virales/metabolismo
13.
J Biol Chem ; 277(6): 4324-33, 2002 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-11713257

RESUMEN

Studies with the myogenic basic helix-loop-helix and MADS box factors suggest that efficient transactivation is dependent on the recruitment of the steroid receptor coactivator (SRC) and the cofactors p300 and p300/CBP-associated factor. SRCs have been demonstrated to recruit CARM1 (coactivator-associated arginine methyltransferase-1), a member of the S-adenosyl-l-methionine-dependent PRMT1-5 (protein-arginine N-methyltransferase-1-5) family, which catalyzes the methylation of arginine residues. This prompted us to investigate the functional role of CARM1/PRMT4 during skeletal myogenesis. We demonstrate that CARM1 and the SRC cofactor GRIP-1 cooperatively stimulate the activity of myocyte enhancer factor-2C (MEF2C). Moreover, there are direct interactions among MEF2C, GRIP-1, and CARM1. Chromatin immunoprecipitation demonstrated the in vivo recruitment of MEF2 and CARM1 to the endogenous muscle creatine kinase promoter in a differentiation-dependent manner. Furthermore, CARM1 is expressed in somites during embryogenesis and in the nuclei of muscle cells. Treatment of myogenic cells with the methylation inhibitor adenosine dialdehyde or tet-regulated CARM1 "antisense" expression did not affect expression of MyoD. However, inhibition of CARM1 inhibited differentiation and abrogated the expression of the key transcription factors (myogenin and MEF2) that initiate the differentiation cascade. This work clearly demonstrates that the arginine methyltransferase CARM1 potentiates myogenesis and supports the positive role of arginine methylation in mammalian differentiation.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Músculo Esquelético/citología , Proteína-Arginina N-Metiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Creatina Quinasa/genética , Proteínas de Unión al ADN/fisiología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/fisiología , Factores de Transcripción MEF2 , Ratones , Músculo Esquelético/enzimología , Factores Reguladores Miogénicos , Regiones Promotoras Genéticas , Unión Proteica , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , ARN sin Sentido/farmacología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA