Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2316615121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861602

RESUMEN

Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 µM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.


Asunto(s)
Antineoplásicos , Iridio , Metano , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Iridio/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metano/análogos & derivados , Metano/química , Metano/farmacología , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino
2.
Chem Sci ; 15(14): 5349-5359, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577372

RESUMEN

Silver compounds have favorable properties as promising anticancer drug candidates, such as low side effects, anti-inflammatory properties, and high potential to overcome drug resistance. However, the exact mechanism by which Ag(i) confers anticancer activity remains unclear, which hinders further development of anticancer applications of silver compounds. Here, we combine thermal proteome profiling, cysteine profiling, and ubiquitome profiling to study the molecular mechanisms of silver(i) complexes supported by non-toxic thiourea (TU) ligands. Through the formation of AgTU complexes, TU ligands deliver Ag+ ions to cancer cells and tumour xenografts to elicit inhibitory potency. Our chemical proteomics studies show that AgTU acts on the ubiquitin-proteasome system (UPS) and disrupts protein homeostasis, which has been identified as a main anticancer mechanism. Specifically, Ag+ ions are released from AgTU in the cellular environment, directly target the 19S proteasome regulatory complex, and may oxidize its cysteine residues, thereby inhibiting proteasomal activity and accumulating ubiquitinated proteins. After AgTU treatment, proteasome subunits are massively ubiquitinated and aberrantly aggregated, leading to impaired protein homeostasis and paraptotic death of cancer cells. This work reveals the unique anticancer mechanism of Ag(i) targeting the 19S proteasome regulatory complex and opens up new avenues for optimizing silver-based anticancer efficacy.

3.
Chem Commun (Camb) ; 59(19): 2747-2750, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36757177

RESUMEN

Dihydroartemisinin non-covalently binds liver fatty acid binding protein (FABP1) with micromolar affinity, acts as a FABP1-dependent peroxisome proliferator-activated receptor alpha agonist and inhibits metastatic hepatocellular carcinoma growth.


Asunto(s)
Artemisininas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado/metabolismo
4.
Cell Rep ; 41(7): 111647, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384131

RESUMEN

Identifying signals that govern the differentiation of tumor-infiltrating CD8+ T cells (CD8+ TILs) toward exhaustion can improve current therapeutic approaches for cancer. Here, we show that type I interferons (IFN-Is) act as environmental cues, enhancing terminal CD8+ T cell exhaustion in tumors. We find enrichment of IFN-I-stimulated genes (ISGs) within exhausted CD8+ T cells (Tex cells) in patients across various cancer types, with heightened ISG levels correlating with poor response to immune checkpoint blockade (ICB) therapy. In preclinical models, CD8+ TILs devoid of IFN-I signaling develop less exhaustion features, provide better tumor control, and show greater response to ICB-mediated rejuvenation. Mechanistically, chronic IFN-I stimulation perturbs lipid metabolism and redox balance in Tex cells, leading to aberrant lipid accumulation and elevated oxidative stress. Collectively, these defects promote lipid peroxidation, which potentiates metabolic and functional exhaustion of Tex cells. Thus, cell-intrinsic IFN-I signaling regulates the extent of CD8+ TIL exhaustion and has important implications for immunotherapy.


Asunto(s)
Enfermedad Injerto contra Huésped , Interferón Tipo I , Neoplasias , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1/metabolismo , Peroxidación de Lípido , Neoplasias/metabolismo , Interferón Tipo I/metabolismo , Lípidos
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33883283

RESUMEN

Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [PtII(C^N^N)(NHC2Bu)]PF6 (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= N-heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.06 µM from surface plasmon resonance measurements and fits into a pocket between the coiled coils of the rod domain of vimentin with multiple hydrophobic interactions. It engages vimentin in cellulo, disrupts vimentin cytoskeleton, reduces vimentin expression in tumors, suppresses xenograft growth and metastasis in different mouse models, and is well tolerated, attributable to biotransformation to less toxic and renal-clearable platinum(II) species. Our studies uncovered the practical therapeutic potential of platinum(II)‒NHC complexes as effective targeted chemotherapy for combating metastatic and cisplatin-resistant cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos Organoplatinos/uso terapéutico , Vimentina/efectos de los fármacos , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Femenino , Células HCT116 , Humanos , Neoplasias Pulmonares/secundario , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Compuestos Organoplatinos/metabolismo , Compuestos Organoplatinos/farmacología , Ratas , Vimentina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Chem Sci ; 12(46): 15229-15238, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34976343

RESUMEN

Self-assembly of platinum(ii) complexes to form supramolecular structures/nanostructures due to intermolecular ligand π-π stacking and metal-ligand dispersive interactions is widely used to develop functional molecular materials, but the application of such non-covalent molecular interactions has scarcely been explored in medical science. Herein is described the unprecedented biological properties of platinum(ii) complexes relevant to induction of cancer cell death via manifesting such intermolecular interactions. With conjugation of a glucose moiety to the planar platinum(ii) terpyridyl scaffold, the water-soluble complex [Pt(tpy)(C[triple bond, length as m-dash]CArOGlu)](CF3SO3) (1a, tpy = 2,2':6',2''-terpyridine, Glu = glucose) is able to self-assemble into about 100 nm nanoparticles in physiological medium, be taken up by lung cancer cells via energy-dependent endocytosis, and eventually transform into other superstructures distributed in endosomal/lysosomal and mitochondrial compartments apparently following cleavage of the glycosidic linkage. Accompanying the formation of platinum-containing superstructures are increased autophagic vacuole formation, lysosomal membrane permeabilization, and mitochondrial membrane depolarization, as well as anti-tumor activity of 1a in a mouse xenograft model. These findings highlight the dynamic, multi-stage extracellular and intracellular supramolecular self-assembly of planar platinum(ii) complexes driven by modular intermolecular interactions with potential anti-cancer application.

7.
Front Chem ; 8: 587207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240849

RESUMEN

The use of gold in medicine has a long history. Recent clinical applications include anti-inflammatory agents for the treatment of rheumatoid arthritis (chrysotherapy), and is currently being developed as potential anticancer chemotherapeutics. Gold(III), being isoelectronic to platinum(II) as in cisplatin, is of great interest but it is inherently unstable and redox-reactive under physiological conditions. Coordination ligands containing C and/or N donor atom(s) such as porphyrin, pincer-type cyclometalated and/or N-heterocyclic carbene (NHC) can be employed to stabilize gold(III) ion for the preparation of anticancer active compounds. In this review, we described our recent work on the anticancer properties of gold(III) compounds and the identification of molecular targets involved in the mechanisms of action. We also summarized the chemical formulation strategies that have been adopted for the delivery of cytotoxic gold compounds, and for ameliorating the in vivo toxicity.

8.
Pharm Res ; 37(11): 220, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051728

RESUMEN

PURPOSE: Gold porphyrin (AuP) is a complex that has been shown to be potent against various tumors. A biocompatible interpenetrating network (IPN) system comprised of polyethyleneglycol diacrylate (PEGdA) and chemically-modified gelatin has been shown to be an effective implantable drug depot to deliver AuP locally. Here we designed IPN microparticles complexed with AuP to facilitate intravenous administration and to diminish systemic toxicity. METHODS: We have synthesized and optimized an IPN microparticle formulation complexed with AuP. Tumor cell cytotoxicity, antitumor activity, and survival rate in lung cancer bearing nude mice were analyzed. RESULTS: IPN microparticles maintained AuP bioactivity against lung cancer cells (NCI-H460). In vivo study showed no observable systemic toxicity in nude mice bearing NCI-H460 xenografts after intravenous injection of 6 mg/kg AuP formulated with IPN microparticles. An anti-tumor activity level comparable to free AuP was maintained. Mice treated with 6 mg/kg AuP in IPN microparticles showed 100% survival rate while the survival rate of mice treated with free AuP was much less. Furthermore, microparticle-formulated AuP significantly reduced the intratumoral microvasculature when compared with the control. CONCLUSION: AuP in IPN microparticles can reduce the systemic toxicity of AuP without compromising its antitumor activity. This work highlighted the potential application of AuP in IPN microparticles for anticancer chemotherapy.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Oro/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Metaloporfirinas/farmacología , Administración Intravenosa , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Línea Celular Tumoral , Composición de Medicamentos , Oro/administración & dosificación , Oro/química , Humanos , Neoplasias Pulmonares/patología , Metaloporfirinas/administración & dosificación , Metaloporfirinas/química , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Analyst ; 145(19): 6237-6242, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32839801

RESUMEN

HPV-induced cervical cancer is one of the most lethal cancers. Therefore, the development of a reliable and accurate method for the early diagnosis of HPV infections is highly important. Here, gold nanoparticles (AuNPs) were utilized as mass tags in an immuno-capture LI-MS assay for the detection of HPV marker proteins. Through the optimization of the amount of antibodies and surface charges on AuNPs, high antigen detection efficiency with minimal non-specific binding was achieved. With optimized antibody-conjugated AuNPs, low attomole amount of HPV proteins in HeLa cell lysate was quantified.


Asunto(s)
Oro , Nanopartículas del Metal , Biomarcadores , Células HeLa , Humanos , Proteínas
10.
Sci Rep ; 10(1): 6338, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286492

RESUMEN

Burn injury is common, and antimicrobial agents are often applied immediately to prevent wound infection and excessive inflammatory response. Although inflammation is essential for clearing bacteria and creating an environment conducive to the healing process, it is unclear what time-frame inflammation should be present for optimal wound healing. This study critically investigated the role of early inflammation in burn wound healing, and also revealed the molecular mechanisms underlying the pro-healing effects of silver nanoparticles (AgNPs). We created a burn injury mouse model using wild-type and Smad3-/- mice, which were topically treated with AgNPs at different post-burn days, and examined the healing processes of the various groups. We also delineated the molecular pathways underlying the anti-inflammation and pro-healing effects of AgNPs by morphological and histological analysis, immuno-histochemistry, and western blotting. Our results showed that (1) AgNPs regulated pro-inflammatory cytokine IL-6 production of keratinocytes and neutrophils infiltration through KGF-2/p38 signaling pathway, (2) Topical AgNPs treatment immediately after burn injury significantly supressed early inflammation but resulted in delayed healing, (3) A short delay in AgNPs application (post-burn day 3 in our model) allowed early inflammation in a controlled manner, and led to optimal burn wound healing. Thus, our current study showed that some degree of early inflammation was beneficial, but prolonged inflammation was detrimental for burn wound healing. Further evaluation and clinical translation of this finding is warranted.


Asunto(s)
Quemaduras/tratamiento farmacológico , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/uso terapéutico , Plata/uso terapéutico , Cicatrización de Heridas , Animales , Quemaduras/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Plata/administración & dosificación , Plata/química , Proteína smad3/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA