Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674851

RESUMEN

Colorectal cancer stands as the third most prevalent form of cancer worldwide, with a notable increase in incidence in Western countries, mainly attributable to unhealthy dietary habits and other factors, such as smoking or reduced physical activity. Greater consumption of vegetables and fruits has been associated with a lower incidence of colorectal cancer, which is attributed to their high content of fiber and bioactive compounds, such as flavonoids. In this study, we have tested the flavonoids quercetin, luteolin, and xanthohumol as potential antitumor agents in an animal model of colorectal cancer induced by azoxymethane and dodecyl sodium sulphate. Forty rats were divided into four cohorts: Cohort 1 (control cohort), Cohort 2 (quercetin cohort), Cohort 3 (luteolin cohort), and Cohort 4 (xanthohumol cohort). These flavonoids were administered intraperitoneally to evaluate their antitumor potential as pharmaceutical agents. At the end of the experiment, after euthanasia, different physical parameters and the intestinal microbiota populations were analyzed. Luteolin was effective in significantly reducing the number of tumors compared to the control cohort. Furthermore, the main significant differences at the microbiota level were observed between the control cohort and the cohort treated with luteolin, which experienced a significant reduction in the abundance of genera associated with disease or inflammatory conditions, such as Clostridia UCG-014 or Turicibacter. On the other hand, genera associated with a healthy state, such as Muribaculum, showed a significant increase in the luteolin cohort. These results underline the anti-colorectal cancer potential of luteolin, manifested through a modulation of the intestinal microbiota and a reduction in the number of tumors.


Asunto(s)
Neoplasias Colorrectales , Flavonoides , Microbioma Gastrointestinal , Luteolina , Propiofenonas , Quercetina , Animales , Luteolina/farmacología , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Propiofenonas/farmacología , Flavonoides/farmacología , Quercetina/farmacología , Ratas , Masculino , Modelos Animales de Enfermedad , Azoximetano , Antineoplásicos/farmacología , Ratas Wistar
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612864

RESUMEN

Flavonoids exhibit various bioactivities including anti-oxidant, anti-tumor, anti-inflammatory, and anti-viral properties. Methylated flavonoids are particularly significant due to their enhanced oral bioavailability, improved intestinal absorption, and greater stability. The heterologous production of plant flavonoids in bacterial factories involves the need for enough biosynthetic precursors to allow for high production levels. These biosynthetic precursors are malonyl-CoA and l-tyrosine. In this work, to enhance flavonoid biosynthesis in Streptomyces albidoflavus, we conducted a transcriptomics study for the identification of candidate genes involved in l-tyrosine catabolism. The hypothesis was that the bacterial metabolic machinery would detect an excess of this amino acid if supplemented with the conventional culture medium and would activate the genes involved in its catabolism towards energy production. Then, by inactivating those overexpressed genes (under an excess of l-tyrosine), it would be possible to increase the intracellular pools of this precursor amino acid and eventually the final flavonoid titers in this bacterial factory. The RNAseq data analysis in the S. albidoflavus wild-type strain highlighted the hppD gene encoding 4-hydroxyphenylpyruvate dioxygenase as a promising target for knock-out, exhibiting a 23.2-fold change (FC) in expression upon l-tyrosine supplementation in comparison to control cultivation conditions. The subsequent knock-out of the hppD gene in S. albidoflavus resulted in a 1.66-fold increase in the naringenin titer, indicating enhanced flavonoid biosynthesis. Leveraging the improved strain of S. albidoflavus, we successfully synthesized the methylated flavanones hesperetin, homoeriodictyol, and homohesperetin, achieving titers of 2.52 mg/L, 1.34 mg/L, and 0.43 mg/L, respectively. In addition, the dimethoxy flavanone homohesperetin was produced as a byproduct of the endogenous metabolism of S. albidoflavus. To our knowledge, this is the first time that hppD deletion was utilized as a strategy to augment the biosynthesis of flavonoids. Furthermore, this is the first report where hesperetin and homoeriodictyol have been synthesized from l-tyrosine as a precursor. Therefore, transcriptomics is, in this case, a successful approach for the identification of catabolism reactions affecting key precursors during flavonoid biosynthesis, allowing the generation of enhanced production strains.


Asunto(s)
Anomalías Craneofaciales , Flavonas , Flavonoides , Perfilación de la Expresión Génica , Hesperidina , Streptomyces , Aminoácidos , Tirosina
3.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474023

RESUMEN

Flavonoids are a large family of polyphenolic compounds with important agro-industrial, nutraceutical, and pharmaceutical applications. Among the structural diversity found in the flavonoid family, methylated flavonoids show interesting characteristics such as greater stability and improved oral bioavailability. This work is focused on the reconstruction of the entire biosynthetic pathway of the methylated flavones diosmetin and chrysoeriol in Streptomyces albidoflavus. A total of eight different genes (TAL, 4CL, CHS, CHI, FNS1, F3'H/CPR, 3'-OMT, 4'-OMT) are necessary for the heterologous biosynthesis of these two flavonoids, and all of them have been integrated along the chromosome of the bacterial host. The biosynthesis of diosmetin and chrysoeriol has been achieved, reaching titers of 2.44 mg/L and 2.34 mg/L, respectively. Furthermore, an additional compound, putatively identified as luteolin 3',4'-dimethyl ether, was produced in both diosmetin and chrysoeriol-producing strains. With the purpose of increasing flavonoid titers, a 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate synthase (DAHP synthase) from an antibiotic biosynthetic gene cluster (BGC) from Amycolatopsis balhimycina was heterologously expressed in S. albidoflavus, enhancing diosmetin and chrysoeriol production titers of 4.03 mg/L and 3.13 mg/L, which is an increase of 65% and 34%, respectively. To the best of our knowledge, this is the first report on the de novo biosynthesis of diosmetin and chrysoeriol in a heterologous host.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa , Flavonas , Streptomyces , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Fosfatos , Flavonas/metabolismo , Flavonoides/química
4.
Nutrients ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542713

RESUMEN

This work represents an overview of the current investigations involving organosulfur compounds and colorectal cancer. The molecules discussed in this review have been investigated regarding their impact on colorectal cancer directly, at the in vitro, in vivo, and clinical stages. Organosulfur compounds may have indirect effects on colorectal cancer, such as due to their modulating effects on the intestinal microbiota or their positive effects on intestinal mucosal health. Here, we focus on their direct effects via the repression of multidrug resistance proteins, triggering of apoptosis (via the inhibition of histone deacetylases, increases in reactive oxygen species, p53 activation, ß-catenin inhibition, damage in the mitochondrial membrane, etc.), activation of TGF-ß, binding to tubulin, inhibition of angiogenesis and metastasis mechanisms, and inhibition of cancer stem cells, among others. In general, the interesting positive effects of these nutraceuticals in in vitro tests must be further analyzed with more in vivo models before conducting clinical trials.


Asunto(s)
Neoplasias Colorrectales , Compuestos de Azufre , Humanos , Apoptosis , Suplementos Dietéticos , Neoplasias Colorrectales/patología , Línea Celular Tumoral
5.
Microb Cell Fact ; 22(1): 234, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964284

RESUMEN

Flavonoids are important plant secondary metabolites showing antioxidant, antitumor, anti-inflammatory, and antiviral activities, among others. Methylated flavonoids are particularly interesting compared to non-methylated ones due to their greater stability and intestinal absorption, which improves their oral bioavailability. In this work we have stablished a metabolic engineered strain of Streptomyces albidoflavus with enhanced capabilities for flavonoid production, achieving a 1.6-fold increase in the biosynthesis of naringenin with respect to the parental strain. This improved strain, S. albidoflavus UO-FLAV-004, has been used for the heterologous biosynthesis of the methylated flavonoids sakuranetin, acacetin and genkwanin. The achieved titers of sakuranetin and acacetin were 8.2 mg/L and 5.8 mg/L, respectively. The genkwanin titers were 0.8 mg/L, with a bottleneck identified in this producing strain. After applying a co-culture strategy, genkwanin production titers reached 3.5 mg/L, which represents a 4.4-fold increase. To our knowledge, this study presents the first biosynthesis of methylated flavonoids in not only any Streptomyces species, but also in any Gram-positive bacteria.


Asunto(s)
Ingeniería Metabólica , Streptomyces , Ingeniería Metabólica/métodos , Flavonoides , Streptomyces/genética , Streptomyces/metabolismo
6.
Microb Cell Fact ; 22(1): 167, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644530

RESUMEN

BACKGROUND: Naringenin is an industrially relevant compound due to its multiple pharmaceutical properties as well as its central role in flavonoid biosynthesis. RESULTS: On our way to develop Streptomyces albidoflavus J1074 as a microbial cell factory for naringenin production, we have significantly increased the yields of this flavanone by combining various metabolic engineering strategies, fermentation strategies and genome editing approaches in a stepwise manner. Specifically, we have screened different cultivation media to identify the optimal production conditions and have investigated how the additive feeding of naringenin precursors influences the production. Furthermore, we have employed genome editing strategies to remove biosynthetic gene clusters (BGCs) associated with pathways that might compete with naringenin biosynthesis for malonyl-CoA precursors. Moreover, we have expressed MatBC, coding for a malonate transporter and an enzyme responsible for the conversion of malonate into malonyl-CoA, respectively, and have duplicated the naringenin BGC, further contributing to the production improvement. By combining all of these strategies, we were able to achieve a remarkable 375-fold increase (from 0.06 mg/L to 22.47 mg/L) in naringenin titers. CONCLUSION: This work demonstrates the influence that fermentation conditions have over the final yield of a bioactive compound of interest and highlights various bottlenecks that affect production. Once such bottlenecks are identified, different strategies can be applied to overcome them, although the efficiencies of such strategies may vary and are difficult to predict.


Asunto(s)
Flavanonas , Microbiología Industrial , Streptomyces , Ingeniería Metabólica , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Flavanonas/biosíntesis , Cerulenina/farmacología , Fenilalanina/farmacología , Tirosina/farmacología
7.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240225

RESUMEN

Eriodictyol is a hydroxylated flavonoid displaying multiple pharmaceutical activities, such as antitumoral, antiviral or neuroprotective. However, its industrial production is limited to extraction from plants due to its inherent limitations. Here, we present the generation of a Streptomyces albidoflavus bacterial factory edited at the genome level for an optimized de novo heterologous production of eriodictyol. For this purpose, an expansion of the Golden Standard toolkit (a Type IIS assembly method based on the Standard European Vector Architecture (SEVA)) has been created, encompassing a collection of synthetic biology modular vectors (adapted for their use in actinomycetes). These vectors have been designed for the assembly of transcriptional units and gene circuits in a plug-and-play manner, as well as for genome editing using CRISPR-Cas9-mediated genetic engineering. These vectors have been used for the optimization of the eriodictyol heterologous production levels in S. albidoflavus by enhancing the flavonoid-3'-hydroxylase (F3'H) activity (by means of a chimera design) and by replacing three native biosynthetic gene clusters in the bacterial chromosome with the plant genes matBC (involved in extracellular malonate uptake and its intracellular activation into malonyl-CoA), therefore allowing more malonyl-CoA to be devoted to the heterologous production of plant flavonoids in this bacterial factory. These experiments have allowed an increase in production of 1.8 times in the edited strain (where the three native biosynthetic gene clusters have been deleted) in comparison with the wild-type strain and a 13 times increase in eriodictyol overproduction in comparison with the non-chimaera version of the F3'H enzyme.


Asunto(s)
Actinobacteria , Actinobacteria/genética , Actinomyces , Flavonoides
8.
Int J Biol Macromol ; 203: 638-649, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090944

RESUMEN

Polyhydroxybutyrate (PHB) is a non-toxic polyhydroxyalkanoate polymer produced by several microorganisms, widely used as a biological substitute for plastics derived from fossil hydrocarbons. In this work, PHB polymer has been tested in an animal model for colorectal cancer. In the animal model, PHB has been able to reduce the number of polyps by 48,1%, and the tumoral extension area by 58,1%. Also, PHB induces a selective increase in beneficial gut bacterial taxons in this animal model, and a selective reduction in pro-inflammatory taxons, demonstrating its value as a nutraceutical compound. This antitumor effect is caused by gut production of 3-hydroxybutyrate and butyrate. In this animal model, 3-hydroxybutyrate is also observed in plasma and in brain tissue, after PHB consumption, making PHB supplementation interesting as a bioactive compound in other extraintestinal conditions, as 3-hydroxybutyrate has been reported to enhance brain and cognitive function, cardiac performance, appetite suppression and diabetes. Therefore, PHB could be postulated as an interesting non-polysaccharide antitumor prebiotic, paving the way towards its future use in functional foods.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Polihidroxialcanoatos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Hidroxibutiratos/farmacología , Modelos Animales , Poliésteres , Ratas
9.
Biomed Pharmacother ; 143: 112241, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649363

RESUMEN

Flavonoids are plant bioactive compounds of great interest in nutrition and pharmacology, due to their remarkable properties as antioxidant, anti-inflammatory, antibacterial, antifungal and antitumor drugs. More than 5000 different flavonoids exist in nature, with a huge structural diversity and a plethora of interesting pharmacological properties. In this work, five flavonoids were tested for their potential use as antitumor drugs against three CRC cell lines (HCT116, HT-29 and T84). These cell lines represent three different stages of this tumor, one of which is metastatic. Xanthohumol showed the best antitumor activity on the three cancer cell lines, even better than that of the clinical drug 5-fluorouracil (5-FU), although no synergistic effect was observed in the combination therapy with this drug. On the other hand, apigenin and luteolin displayed slightly lower antitumor activities on these cancer cell lines but showed a synergistic effect in combination with 5-FU in the case of HTC116, which is of potential clinical interest. Furthermore, a literature review highlighted that these flavonoids show very interesting palliative effects on clinical symptoms such as diarrhea, mucositis, neuropathic pain and others often associated with the chemotherapy treatment of CRC. Flavonoids could provide a double effect for the combination treatment, potentiating the antitumor effect of 5-FU, and simultaneously, preventing important side effects of 5-FU chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Flavonoides/farmacología , Cuidados Paliativos , Antimetabolitos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apigenina/farmacología , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Flavanonas/farmacología , Fluorouracilo/farmacología , Células HCT116 , Células HT29 , Humanos , Luteolina/farmacología , Propiofenonas/farmacología
10.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34576306

RESUMEN

Streptomycetes are important biotechnological bacteria that produce several clinically bioactive compounds. They have a complex development, including hyphae differentiation and sporulation. Cytosolic copper is a well-known modulator of differentiation and secondary metabolism. The interruption of the Streptomyces coelicolor SCO2730 (copper chaperone, SCO2730::Tn5062 mutant) blocks SCO2730 and reduces SCO2731 (P-type ATPase copper export) expressions, decreasing copper export and increasing cytosolic copper. This mutation triggers the expression of 13 secondary metabolite clusters, including cryptic pathways, during the whole developmental cycle, skipping the vegetative, non-productive stage. As a proof of concept, here, we tested whether the knockdown of the SCO2730/31 orthologue expression can enhance secondary metabolism in streptomycetes. We created a SCO2730/31 consensus antisense mRNA from the sequences of seven key streptomycetes, which helped to increase the cytosolic copper in S. coelicolor, albeit to a lower level than in the SCO2730::Tn5062 mutant. This antisense mRNA affected the production of at least six secondary metabolites (CDA, 2-methylisoborneol, undecylprodigiosin, tetrahydroxynaphtalene, α-actinorhodin, ε-actinorhodin) in the S. coelicolor, and five (phenanthroviridin, alkylresorcinol, chloramphenicol, pikromycin, jadomycin G) in the S. venezuelae; it also helped to alter the S. albus metabolome. The SCO2730/31 consensus antisense mRNA designed here constitutes a tool for the knockdown of SCO2730/31 expression and for the enhancement of Streptomyces' secondary metabolism.


Asunto(s)
Proteínas Bacterianas/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Metabolismo Secundario , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/genética , Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , Chaperonas Moleculares/genética , Streptomyces coelicolor/genética
11.
Antioxidants (Basel) ; 10(8)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34439512

RESUMEN

Synthetic antioxidant food additives, such as BHA, BHT and TBHQ, are going through a difficult time, since these products generate a negative perception in consumers. This has generated an increased pressure on food manufacturers to search for safer natural alternatives like phytochemicals (such as polyphenols, including flavonoids, and essential oils rich in terpenoids, including carotenoids). These plant bioactive compounds have antioxidant activities widely proven in in vitro tests and in diverse food matrices (meat, fish, oil and vegetables). As tons of food are wasted every year due to aesthetic reasons (lipid oxidation) and premature damage caused by inappropriate packaging, there is an urgent need for natural antioxidants capable of replacing the synthetic ones to meet consumer demands. This review summarizes industrially interesting antioxidant bioactivities associated with terpenoids and polyphenols with respect to the prevention of lipid oxidation in high fat containing foods, such as meat (rich in saturated fat), fish (rich in polyunsaturated fat), oil and vegetable products, while avoiding the generation of rancid flavors and negative visual deterioration (such as color changes due to oxidized lipids). Terpenoids (like monoterpenes and carotenoids) and polyphenols (like quercetin and other flavonoids) are important phytochemicals with a broad range of antioxidant effects. These phytochemicals are widely distributed in fruits and vegetables, including agricultural waste, and are remarkably useful in food preservation, as they show bioactivity as plant antioxidants, able to scavenge reactive oxygen and nitrogen species, such as superoxide, hydroxyl or peroxyl radicals in meat and other products, contributing to the prevention of lipid oxidation processes in food matrices.

12.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924070

RESUMEN

In our study, we demonstrated the performance of antimicrobial coatings on properly functionalized and nanostructured 316L food-grade stainless steel pipelines. For the fabrication of these functional coatings, we employed facile and low-cost electrochemical techniques and surface modification processes. The development of a nanoporous structure on the 316L stainless steel surface was performed by following an electropolishing process in an electrolytic bath, at a constant anodic voltage of 40 V for 10 min, while the temperature was maintained between 0 and 10 °C. Subsequently, we incorporated on this nanostructure additional coatings with antimicrobial and bactericide properties, such as Ag nanoparticles, Ag films, or TiO2 thin layers. These functional coatings were grown on the nanostructured substrate by following electroless process, electrochemical deposition, and atomic layer deposition (ALD) techniques. Then, we analyzed the antimicrobial efficiency of these functionalized materials against different biofilms types (Candida parapsilosis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis). The results of the present study demonstrate that the nanostructuring and surface functionalization processes constitute a promising route to fabricate novel functional materials exhibiting highly efficient antimicrobial features. In fact, we have shown that our use of an appropriated association of TiO2 layer and Ag nanoparticle coatings over the nanostructured 316L stainless steel exhibited an excellent antimicrobial behavior for all biofilms examined.

13.
Int J Biol Macromol ; 167: 1349-1360, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33202274

RESUMEN

Large intestine cancer is one of the most relevant chronic diseases taking place at present. Despite therapies have evolved very positively, this pathology is still under deep investigation. One of the recent approaches is the prevention by natural compounds such as pectin. In this paper, we have assessed the impact of citrus pectin and modified citrus pectin on colorectal cancer in rats (Rattus norvegicus F344) to which azoxymethane and DSS were supplied. The lowest intake of food and body weight were detected in animals fed with citrus pectin, together with an increase in the caecum weight, probably due to the viscosity, water retention capacity and bulking properties of pectin. The most striking feature was that, neither citrus pectin nor modified citrus pectin gave rise to a tumorigenesis prevention. Moreover, in both, more than 50% of rats with cancer died, probably ascribed to a severe dysbiosis state in the gut, as shown by the metabolism and metagenomics studies carried out. This was related to a decrease of pH in caecum lumen and increase in acetate and lactic acid levels together with the absence of propionic and butyric acids. A relevant increase in Proteobacteria (Enterobacteriaceae) were thought to be one of the reasons for enteric infection that could have provoked the death of rats and the lack of cancer prevention. However, a reduction of blood glucose and triacylglycerides level and an increase of Bifidobacterium and Lactobacillaceae were found in animals that intake pectin, as compared to universal and modified citrus pectin feeding.


Asunto(s)
Azoximetano/toxicidad , Carcinogénesis/efectos de los fármacos , Neoplasias Colorrectales/dietoterapia , Microbioma Gastrointestinal/efectos de los fármacos , Pectinas/uso terapéutico , Acetatos/metabolismo , Animales , Azoximetano/farmacología , Bifidobacterium/aislamiento & purificación , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Butiratos/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Cromatografía Líquida de Alta Presión , Citrus/química , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Lactobacillaceae/aislamiento & purificación , Masculino , Metagenómica , Pectinas/análisis , Filogenia , Propionatos/metabolismo , Proteobacteria/aislamiento & purificación , Ratas , Ratas Endogámicas F344 , Triglicéridos/sangre
14.
J Food Prot ; 83(1): 163-171, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31860394

RESUMEN

Synthetic food additives generate a negative perception in consumers. This fact generates an important pressure on food manufacturers, searching for safer natural alternatives. Phytochemicals (such as polyphenols and thiols) and plant essential oils (terpenoids) possess antimicrobial activities that are able to prevent food spoilage due to fungi (e.g., Aspergillus, Penicillium) and intoxications (due to mycotoxins), both of which are important economic and health problems worldwide. This review summarizes industrially interesting antifungal bioactivities from the three main types of plant nutraceuticals: terpenoids (as thymol), polyphenols (as resveratrol) and thiols (as allicin) as well as some of the mechanisms of action. These phytochemicals are widely distributed in fruits and vegetables and are very useful in food preservation as they inhibit growth of important spoilage and pathogenic fungi, affecting especially mycelial growth and germination. Terpenoids and essential oils are the most abundant group of secondary metabolites found in plant extracts, especially in common aromatic plants, but polyphenols are a more remarkable group of bioactive compounds as they show a broad array of bioactivities.


Asunto(s)
Contaminación de Alimentos/prevención & control , Conservación de Alimentos , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Terpenos/farmacología , Microbiología de Alimentos , Hongos , Micotoxinas
15.
Sci Rep ; 9(1): 14783, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31616028

RESUMEN

Inulin-rich foods exert a prebiotic effect, as this polysaccharide is able to enhance beneficial colon microbiota populations, giving rise to the in situ production of short-chain fatty acids (SCFAs) such as propionic and butyric acids. These SCFAs are potent preventive agents against colorectal cancer due to their histone deacetylases inhibitory properties, which induce apoptosis in tumor colonocytes. As colorectal cancer is the fourth most common neoplasia in Europe with 28.2 new cases per 100,000 inhabitants, a cost-effective preventive strategy has been tested in this work by redesigning common porcine meat products (chorizo sausages and cooked ham) consumed by a substantial proportion of the population towards potential colorectal cancer preventive functional foods. In order to test the preventive effect of these inulin-rich meat products against colorectal cancer, an animal model (Rattus norvegicus F344) was used, involving two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) during a 20-week assay period. Control feed, control sausages, functional sausages (15.7% inulin), control cooked ham and functional cooked ham (10% inulin) were used to feed the corresponding animal cohorts. Then, the animals were sacrificed and their digestive tract tissues were analyzed. The results showed a statistically significant 49% reduction in the number of colon polyps in the functional meat products cohorts with respect to the control meat products animals, as well as an increase in the cecum weight (an indicator of a diet rich in prebiotic fiber), a 51.8% increase in colon propionate production, a 39.1% increase in colon butyrate concentrations, and a reduction in the number of hyperplastic Peyer's patches. Metagenomics studies also demonstrated colon microbiota differences, revealing a significant increase in Bacteroidetes populations in the functional meat products (mainly due to an increase in Bacteroidaceae and Prevotellaceae families, which include prominent propionate producers), together with a reduction in Firmicutes (especially due to lower Lachnospiraceae populations). However, functional meat products showed a remarkable increase in the anti-inflammatory and fiber-fermentative Blautia genus, which belongs to this Lachnospiraceae family. The functional meat products cohorts also presented a reduction in important pro-inflammatory bacterial populations, such as those of the genus Desulfovibrio and Bilophila. These results were corroborated in a genetic animal model of CRC (F344/NSlc-Apc1588/kyo) that produced similar results. Therefore, processed meat products can be redesigned towards functional prebiotic foods of interest as a cost-effective dietary strategy for preventing colorectal cancer in human populations.


Asunto(s)
Neoplasias Colorrectales/prevención & control , Alimentos Funcionales , Pólipos Intestinales/prevención & control , Inulina/administración & dosificación , Productos de la Carne , Neoplasias Experimentales/prevención & control , Animales , Azoximetano/toxicidad , Colon/metabolismo , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Sulfato de Dextran/toxicidad , Fibras de la Dieta/administración & dosificación , Ácidos Grasos Volátiles/biosíntesis , Microbioma Gastrointestinal/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Pólipos Intestinales/inducido químicamente , Pólipos Intestinales/genética , Pólipos Intestinales/microbiología , Masculino , Metagenómica , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Neoplasias Experimentales/microbiología , Prebióticos/administración & dosificación , Ratas , Porcinos
16.
PLoS One ; 13(11): e0207278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30440014

RESUMEN

Flavonols are a flavonoid subfamily widely distributed in plants, including several ones of great importance in human and animal diet (apple, tomato, broccoli, onion, beans, tea). These polyphenolic nutraceuticals exert potent antimicrobial (membrane potential disruptors), antioxidant (free-radical scavengers), pharmacokinetic (CYP450 modulators), anti-inflammatory (lipoxygenase inhibitors), antiangiogenic (VEGF inhibitors) and antitumor (cyclin inhibitors) activities. Biotechnological production of these nutraceuticals, for example via heterologous biosynthesis in industrial actinomycetes, is favored since in plants these polyphenols appear as inactive glycosylated derivatives, in low concentrations or as part of complex mixtures with other polyphenolic compounds. In this work, we describe the de novo biosynthesis of three important flavonols, myricetin, kaempferol and quercetin, in the industrially relevant actinomycetes Streptomyces coelicolor and S. albus. De novo biosynthesis of kaempferol, myricetin and quercetin in actinomycetes has not been described before.


Asunto(s)
Suplementos Dietéticos , Flavonoides , Quempferoles , Microorganismos Modificados Genéticamente , Quercetina , Streptomyces coelicolor , Flavonoides/biosíntesis , Flavonoides/genética , Quempferoles/biosíntesis , Quempferoles/genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Quercetina/biosíntesis , Quercetina/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
17.
Front Microbiol ; 9: 2004, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233512

RESUMEN

Colorectal cancer (CRC) is one of the most common neoplasias worldwide, and its incidence is increasing. Consumption of prebiotics is a useful strategy in order to prevent this important disease. These nutraceutical compounds might exert protective biological functions as antitumors. In order to test the chemopreventive effect of GOS-Lu (galacto-oligosaccharides derived from lactulose) prebiotic preparation against this cancer, an animal model (Rattus norvegicus F344) was used. In this model, two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) were administered to the animals. Animals were fed for 20 weeks, and either control drinking water or drinking water containing 10% (w/w) GOS-Lu prebiotic preparation was provided to them. Animals were sacrificed after those 20 weeks, and their digestive tract tissues were analyzed. The results revealed a statistically significant reduction in the number of colon tumors in the GOS-Lu cohort with respect to control animals. Metagenomics sequencing was used for studying colon microbiota populations, revealing significant reductions in populations of pro-inflammatory bacteria families and species, and significant increases in interesting beneficial populations, such as Bifidobacterium. Therefore, oral administration of the prebiotic GOS-Lu preparation may be an effective strategy for preventing CRC.

18.
Int J Antimicrob Agents ; 52(3): 309-315, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29777759

RESUMEN

Synthetic food additives generate a negative perception in consumers. Therefore, food manufacturers search for safer natural alternatives such as those involving phytochemicals and plant essential oils. These bioactive compounds have antimicrobial activities widely proven in in vitro tests. Foodborne diseases cause thousands of deaths and millions of infections every year, mainly due to pathogenic bacteria such as Salmonella spp., Campylobacter spp., Escherichia coli, Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. This review summarises industrially interesting antimicrobial bioactivities as well as their mechanisms of action for three main types of plant nutraceuticals, namely terpenoids (e.g. carnosic acid), polyphenols (e.g. quercetin) and thiols (e.g. allicin), which are important constituents of plant essential oils with a broad range of antimicrobial effects. These phytochemicals are widely distributed in fruits and vegetables and are especially useful in food preservation as microbial growth inhibitors.


Asunto(s)
Antibacterianos/farmacología , Bacterias/crecimiento & desarrollo , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Enfermedades Transmitidas por los Alimentos/prevención & control , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Aceites de Plantas/farmacología , Bacterias/efectos de los fármacos , Suplementos Dietéticos , Microbiología de Alimentos , Humanos , Pruebas de Sensibilidad Microbiana , Polifenoles/farmacología , Terpenos/farmacología
19.
Genes (Basel) ; 9(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494510

RESUMEN

Colorectal cancer is the fourth most common neoplasia in Europe, where it accounts for 28.2 new cases per 100,000 inhabitants. In an effort to decrease the incidence of this disease, various prevention measures are being studied, one of which are anthocyanin-rich foods. Anthocyanins are potent antioxidant flavonoids mainly found in flowers and colorful fruits and vegetables. These nutraceuticals have diverse biological functions once ingested, including immunomodulatory, anti-inflammatory and antitumor functions. In order to test the preventive effect of these flavonoids against colorectal cancer, an animal model (Rattus norvegicus F344) was developed. In this model two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) were administered to the animals. For 20 weeks they were fed either control rat feed, control sausages, or functional sausages containing 0.1% (w/w) of anthocyanins from a mixture of dehydrated blackberries and strawberries. At the end of that period, the animals were sacrificed and their antioxidant plasma levels and digestive tract tissues were analyzed. The results revealed a statistically significant reduction in the number of colon tumors in the functional sausages cohort with respect to the control animals and an increase in the FRAP (ferric reducing ability of plasma) total antioxidant activity in that same cohort. Colon microbiota differences were also examined via metagenomics 16S ribosomal RNA (rRNA) sequencing, revealing a significant reduction in populations of the pro-inflammatory Bilophila wadsworthia. Therefore, the design of functional processed meat products, such as ones enriched with anthocyanins, may be an effective strategy for preventing inflammatory digestive diseases and colorectal cancer in human populations.

20.
Front Microbiol ; 8: 921, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611737

RESUMEN

Nutraceutical compounds as plant flavonoids play an important role in prevention and modulation of diverse heath conditions, as they exert interesting antifungal, antibacterial, antioxidant, and antitumor effects. They also possess anti-inflammatory activities in arthritis, cardiovascular disease or neurological diseases, as well as modulatory effects on the CYP450 activity on diverse drugs. Most flavonoids are bioactive molecules of plant origin, but their industrial production is sometimes hindered due to reasons as low concentration in the plant tissues, presence in only some species or as a complex mixture or inactive glycosides in plant vacuolae. In this work, we describe the de novo biosynthesis of two important flavones, apigenin and luteolin, and one known flavanone, eriodictyol. Their plant biosynthetic pathways have been reconstructed for heterologous expression in Streptomyces albus, an actinomycete bacterium manageable at industrial production level. Also, production levels for apigenin have been improved by feeding with naringenin precursor, and timing for settlement of secondary metabolism has been advanced by spore conditioning. In the cases of eriodictyol and luteolin, their production in this important type of biotechnology-prone bacteria, the actinomycetes, had not been described in the literature yet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA