Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 11(1): 1128, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111832

RESUMEN

The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBP Regulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRINGKO cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRINGKO cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling.


Asunto(s)
Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Línea Celular , Desarrollo Embrionario/genética , Retículo Endoplásmico/metabolismo , Expresión Génica , Aparato de Golgi/metabolismo , Haploidia , Hepatocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
2.
Mol Nutr Food Res ; 63(19): e1900385, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31327168

RESUMEN

SCOPE: The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION: Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.


Asunto(s)
Colesterol/biosíntesis , Grasas de la Dieta/farmacología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Proteína 2 de Unión a Elementos Reguladores de Esteroles/fisiología , Ácidos Grasos trans/farmacología , Células 3T3-L1 , Animales , Células CHO , Carcinoma Hepatocelular , Línea Celular Tumoral , Colesterol/genética , Cricetulus , Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ácidos Oléicos/farmacología
3.
Atherosclerosis ; 281: 137-142, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30658189

RESUMEN

BACKGROUND AND AIMS: Cholesterol is an essential lipid for cellular function and membrane integrity, and hence its cellular levels and distribution must be tightly regulated. Biosynthesis of cholesterol is ramped when its cellular levels are low. Herein, the ER-resident and rate-limiting enzymes 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and squalene monooxygenase (SQLE) play a prominent role. We have recently reported that MARCH6, an E3 ubiquitin ligase, specifically promotes cholesterol-stimulated ubiquitylation and subsequent proteasomal degradation of SQLE, but not of HMGCR. To further delineate how post-translational regulation of SQLE and HMGCR is differentially achieved, we hypothesized that their sterol-dependent degradation machinery makes use of distinct E2 ubiquitin conjugating enzymes. METHODS: To study this possibility, we therefore used a CRISPR/Cas9-based approach to screen for ER-associated degradation (ERAD)-associated E2 enzymes that are essential for MARCH6-dependent degradation of SQLE. RESULTS: We report here the identification of UBE2J2 as the primary E2 ubiquitin conjugating enzyme essential for this process in mammalian cells, in contrast to UBE2G2, which is essential for sterol-stimulated degradation of HMGCR. We demonstrate that ablating UBE2J2 disturbs cholesterol-accelerated SQLE degradation in multiple human cell types, including cells of hepatic origin, and that the ability of UBE2J2 to support SQLE degradation critically depends on its enzymatic activity. CONCLUSIONS: Our findings establish UBE2J2 as an important partner of MARCH6 in cholesterol-stimulated degradation of SQLE, thereby contributing to the complex regulation of cellular cholesterol homeostasis.


Asunto(s)
Colesterol/biosíntesis , Hepatocitos/enzimología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/metabolismo , Escualeno-Monooxigenasa/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Estabilidad de Enzimas , Células HEK293 , Células Hep G2 , Humanos , Proteínas de la Membrana/genética , Proteolisis , Factores de Tiempo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Arterioscler Thromb Vasc Biol ; 37(11): 2064-2074, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28882874

RESUMEN

OBJECTIVE: The cellular demand for cholesterol requires control of its biosynthesis by the mevalonate pathway. Regulation of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), a rate-limiting enzyme in this pathway and the target of statins, is a key control point herein. Accordingly, HMGCR is subject to negative and positive regulation. In particular, the ability of oxysterols and intermediates of the mevalonate pathway to stimulate its proteasomal degradation is an exquisite example of metabolically controlled feedback regulation. To define the genetic determinants that govern this process, we conducted an unbiased haploid mammalian genetic screen. APPROACH AND RESULTS: We generated human haploid cells with mNeon fused to endogenous HMGCR using CRISPR/Cas9 and used these cells to interrogate regulation of HMGCR abundance in live cells. This resulted in identification of known and new regulators of HMGCR, and among the latter, UBXD8 (ubiquitin regulatory X domain-containing protein 8), a gene that has not been previously implicated in this process. We demonstrate that UBXD8 is an essential determinant of metabolically stimulated degradation of HMGCR and of cholesterol biosynthesis in multiple cell types. Accordingly, UBXD8 ablation leads to aberrant cholesterol synthesis due to loss of feedback control. Mechanistically, we show that UBXD8 is necessary for sterol-stimulated dislocation of ubiquitylated HMGCR from the endoplasmic reticulum membrane en route to proteasomal degradation, a function dependent on its UBX domain. CONCLUSIONS: We establish UBXD8 as a previously unrecognized determinant that couples flux across the mevalonate pathway to control of cholesterol synthesis and demonstrate the feasibility of applying mammalian haploid genetics to study metabolic traits.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Colesterol/biosíntesis , Haploidia , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas Sanguíneas/genética , Sistemas CRISPR-Cas , Retículo Endoplásmico/enzimología , Estabilidad de Enzimas , Retroalimentación Fisiológica , Regulación Enzimológica de la Expresión Génica , Células Hep G2 , Hepatocitos/enzimología , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Proteínas de la Membrana/genética , Ácido Mevalónico/metabolismo , Microscopía Confocal , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Ubiquitinación
6.
Nat Commun ; 8(1): 445, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874658

RESUMEN

Advanced prostate cancer (PCa) is a clinical challenge as no curative therapeutic is available. In this context, a better understanding of metastasis and resistance mechanisms in PCa is an important issue. As phosphatase and tensin homolog (PTEN) loss is the most common genetic lesion in such cancer, we investigate human data sets for mechanisms that can constrain cancer evolution in this setting. Here we report a liver X receptor (LXR) signature, which tightly correlates with PTEN loss, in PCa. Accordingly, the LXR pathway is deregulated in prostate carcinomas in Pten-null mice. Genetic ablation of LXRs in Pten-null mice, exacerbates PCa invasiveness and metastatic dissemination, which involves mesenchymal transition and accumulation of matrix metalloproteinases. Mechanistically, PTEN deletion governed LXR transcriptional activity through deregulation of cholesterol de novo synthesis, resulting in accumulation of endogenous LXR ligands. Our study therefore reveals a functional circuit linking PTEN and LXR, and highlights LXRs as metabolic gatekeepers that are able to constrain PCa progression.Treatment of prostate cancer, especially in its advanced stage, is still challenging; therefore, strategies to prevent metastatic dissemination are of great interest. Here the authors reveal a crucial role for liver X receptors in suppressing prostate carcinogenesis and metastatic progression in PTEN-null tumors.


Asunto(s)
Receptores X del Hígado/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Colesterol/metabolismo , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Humanos , Estimación de Kaplan-Meier , Receptores X del Hígado/deficiencia , Masculino , Ratones Noqueados , Metástasis de la Neoplasia , Fosfohidrolasa PTEN/deficiencia , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
7.
Methods Mol Biol ; 1583: 53-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28205166

RESUMEN

Determination of LDL particle uptake into cells is a valuable technique in the field of cholesterol metabolism. This allows assessment of LDL uptake capacity in different adherent and non-adherent cells types, as well as the effect of cellular, genetic, or pharmacological perturbations on this process. Here, we detail a general procedure that describes the production of fluorescently-labeled LDL particles and quantitative and non-quantitative assays for determining cellular LDL uptake.


Asunto(s)
Colorantes Fluorescentes , Lipoproteínas LDL , Coloración y Etiquetado , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Colorantes Fluorescentes/farmacología , Células Hep G2 , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/aislamiento & purificación , Lipoproteínas LDL/farmacocinética , Lipoproteínas LDL/farmacología
8.
Circ Res ; 118(2): 222-9, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26582775

RESUMEN

RATIONALE: The (pro)renin receptor ([P]RR) interacts with (pro)renin at concentrations that are >1000× higher than observed under (patho)physiological conditions. Recent studies have identified renin-angiotensin system-independent functions for (P)RR related to its association with the vacuolar H(+)-ATPase. OBJECTIVE: To uncover renin-angiotensin system-independent functions of the (P)RR. METHODS AND RESULTS: We used a proteomics-based approach to purify and identify (P)RR-interacting proteins. This resulted in identification of sortilin-1 (SORT1) as a high-confidence (P)RR-interacting protein, a finding which was confirmed by coimmunoprecipitation of endogenous (P)RR and SORT1. Functionally, silencing (P)RR expression in hepatocytes decreased SORT1 and low-density lipoprotein (LDL) receptor protein abundance and, as a consequence, resulted in severely attenuated cellular LDL uptake. In contrast to LDL, endocytosis of epidermal growth factor or transferrin remained unaffected by silencing of the (P)RR. Importantly, reduction of LDL receptor and SORT1 protein abundance occurred in the absence of changes in their corresponding transcript level. Consistent with a post-transcriptional event, degradation of the LDL receptor induced by (P)RR silencing could be reversed by lysosomotropic agents, such as bafilomycin A1. CONCLUSIONS: Our study identifies a renin-angiotensin system-independent function for the (P)RR in the regulation of LDL metabolism by controlling the levels of SORT1 and LDL receptor.


Asunto(s)
Endocitosis , Hepatocitos/metabolismo , Lipoproteínas LDL/metabolismo , Proteómica , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células CHO , Inmunoprecipitación de Cromatina , Cricetulus , Células HEK293 , Células Hep G2 , Humanos , Procesamiento Proteico-Postraduccional , Proteolisis , Proteómica/métodos , Interferencia de ARN , Receptores de Superficie Celular/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transfección , ATPasas de Translocación de Protón Vacuolares/genética
9.
Mol Cell Biol ; 36(2): 285-94, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26527619

RESUMEN

Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake.


Asunto(s)
Colesterol/metabolismo , Hepatocitos/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vías Biosintéticas , Línea Celular , Silenciador del Gen , Células Hep G2 , Humanos , Proteínas de la Membrana/genética , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/genética
10.
Sci Signal ; 8(393): ra90, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26350900

RESUMEN

Given its fundamental role in development and cancer, the Wnt-ß-catenin signaling pathway is tightly controlled at multiple levels. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase originally found in stem cells and proposed to inhibit Wnt signaling by interacting with the Wnt receptors of the Frizzled family. We detected endogenous RNF43 in the nucleus of human intestinal crypt and colon cancer cells. We found that RNF43 physically interacted with T cell factor 4 (TCF4) in cells and tethered TCF4 to the nuclear membrane, thus silencing TCF4 transcriptional activity even in the presence of constitutively active mutants of ß-catenin. This inhibitory mechanism was disrupted by the expression of RNF43 bearing mutations found in human gastrointestinal tumors, and transactivation of the Wnt pathway was observed in various cells and in Xenopus embryos when the RING domain of RNF43 was mutated. Our findings indicate that RNF43 inhibits the Wnt pathway downstream of oncogenic mutations that activate the pathway. Mimicking or enhancing this inhibitory activity of RNF43 may be useful to treat cancers arising from aberrant activation of the Wnt pathway.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN/metabolismo , Membrana Nuclear/metabolismo , Proteínas Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Humanos , Mutación , Membrana Nuclear/genética , Proteínas Oncogénicas/genética , Factor de Transcripción 4 , Factores de Transcripción/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas , Xenopus laevis , beta Catenina/genética
11.
Mol Cell Biol ; 34(7): 1262-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24449766

RESUMEN

The mevalonate pathway is used by cells to produce sterol and nonsterol metabolites and is subject to tight metabolic regulation. We recently reported that squalene monooxygenase (SM), an enzyme controlling a rate-limiting step in cholesterol biosynthesis, is subject to cholesterol-dependent proteasomal degradation. However, the E3-ubiquitin (E3) ligase mediating this effect was not established. Using a candidate approach, we identify the E3 ligase membrane-associated RING finger 6 (MARCH6, also known as TEB4) as the ligase controlling degradation of SM. We find that MARCH6 and SM physically interact, and consistent with MARCH6 acting as an E3 ligase, its overexpression reduces SM abundance in a RING-dependent manner. Reciprocally, knockdown of MARCH6 increases the level of SM protein and prevents its cholesterol-regulated degradation. Additionally, this increases cell-associated SM activity but is unexpectedly accompanied by increased flux upstream of SM. Prompted by this observation, we found that knockdown of MARCH6 also controls the level of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) in hepatocytes and model cell lines. In conclusion, MARCH6 controls abundance of both SM and HMGCR, establishing it as a major regulator of flux through the cholesterol synthesis pathway.


Asunto(s)
Colesterol/biosíntesis , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/metabolismo , Escualeno-Monooxigenasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Estabilidad de Enzimas , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ácido Mevalónico/metabolismo , Modelos Biológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Escualeno-Monooxigenasa/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA