Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 14(1): 12266, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806527

RESUMEN

Carnosol, a rosemary polyphenol, displays anticancer properties and is suggested as a safer alternative to conventional surgery, radiotherapy, and chemotherapy. Given that its effects on gingiva carcinoma have not yet been investigated, the aim of this study was to explore its anti-tumor selectivity and to unravel its underlying mechanisms of action. Hence, oral tongue and gingiva carcinoma cell lines exposed to carnosol were analyzed to estimate cytotoxicity, cell viability, cell proliferation, and colony formation potential as compared with those of normal cells. Key cell cycle and apoptotic markers were also measured. Finally, cell migration, oxidative stress, and crucial cell signaling pathways were assessed. Selective anti-gingiva carcinoma activity was disclosed. Overall, carnosol mediated colony formation and proliferation suppression in addition to cytotoxicity induction. Cell cycle arrest was highlighted by the disruption of the c-myc oncogene/p53 tumor suppressor balance. Carnosol also increased apoptosis, oxidative stress, and antioxidant activity. On a larger scale, the alteration of cell cycle and apoptotic profiles was also demonstrated by QPCR array. This was most likely achieved by controlling the STAT5, ERK1/2, p38, and NF-ĸB signaling pathways. Lastly, carnosol reduced inflammation and invasion ability by modulating IL-6 and MMP9/TIMP-1 axes. This study establishes a robust foundation, urging extensive inquiry both in vivo and in clinical settings, to substantiate the efficacy of carnosol in managing gingiva carcinoma.


Asunto(s)
Abietanos , Apoptosis , Proliferación Celular , Humanos , Abietanos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Gingivales/tratamiento farmacológico , Neoplasias Gingivales/metabolismo , Neoplasias Gingivales/patología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología
2.
Sci Rep ; 14(1): 10958, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740853

RESUMEN

Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Proliferación Celular , Eugenol , Neoplasias Gingivales , Humanos , Eugenol/farmacología , Eugenol/uso terapéutico , Neoplasias Gingivales/tratamiento farmacológico , Neoplasias Gingivales/patología , Neoplasias Gingivales/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quimioterapia Adyuvante/métodos
3.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230847

RESUMEN

Cannabinoids, the active components of cannabis exert palliative effects in cancer patients by preventing nausea, vomiting and pain as well as by stimulating appetite. Recent studies indicated that cannabinoids could be helpful in treating certain rare forms of cancer and other inflammatory diseases. The objective of this study was to investigate the cytotoxic effect of a cannabinoid mixture (CM) in oral cells. Thus, normal and cancer gingival cells were treated with different concentrations of CM to evaluate their proliferation by MTT assay, cytotoxicity by using LDH assay, colony formation with crystal violet and migration by the scratch method. In addition, apoptosis, autophagy, oxidative stress, antioxidant level, DNA damage and the mitochondrial membrane potential (ΔΨm) generated by proton pumps were measured by flow cytometry. Furthermore, deactivation of the key signaling pathways involved in cancer progression such as NF-κB, ERK1/2, p38, STAT1, STAT3, STAT5 was also evaluated by this technique. These outcomes indicate that CM, at a concentration higher than 0.1 µg/mL, provokes high cytotoxicity in Ca9-22 oral cancer cells but not in GMSM-K gingival normal cells. Apoptosis, autophagy, antioxidant levels and mitochondrial stress as well as DNA damage in oral cells were increased following exposure to low concentration (1 µg/mL). In addition, major signaling pathways that are involved such as MAPKase, STATs and NF-κB pathways were inhibited by CM as well as cell migration. Our results suggest that cannabinoids could potentially have a beneficial effect on oral cancer therapy.

4.
Arch Oral Biol ; 141: 105498, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35810494

RESUMEN

OBJECTIVES: This study aims to investigate the effects of cannabis smoke condensate (CSC) on the adhesion, growth, and signaling pathways of human gingival epithelial cells. DESIGN: The effects of CSC on cell shape and adhesion, and viability were evaluated after 30 min, 60 min, 2 h, and 24 h of exposure using microscopic observation, cell metabolic activity, and lactate dehydrogenase activity assays. The effects of CSC on cell apoptosis, necrosis, autophagy, and oxidative stress were determined through flow cytometry, while apoptotic and autophagic gene expression were identified via an RT2-PCR array. Phosphorylated signaling pathway proteins were measured using flow cytometry. RESULTS: CSC deregulated gingival epithelial cell shape and adhesion, decreased cell viability, and increased lactate dehydrogenase release. Its toxic effects included apoptosis, autophagy, and oxidative stress. Moreover, it modulated seven specific apoptotic and six autophagic genes. Furthermore, it decreased phosphorylation in signaling proteins, such as STAT5, ERK12, P38, and nuclear factor κB. CONCLUSIONS: CSC has notable adverse effects on gingival epithelial cells. This finding indicates that cannabis smoke could impair gingival epithelial cell innate immune function, leading to gingivitis and periodontitis. Oral health professionals may need to document observed modifications in the oral cavity of patients who smoke cannabis and consider these potential changes during clinical care.


Asunto(s)
Cannabis , Apoptosis , Autofagia , Células Epiteliales , Humanos , Lactato Deshidrogenasas , Estrés Oxidativo , Nicotiana
5.
Sci Rep ; 11(1): 13087, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158560

RESUMEN

Oral cancer is one of the major public health problems. The aim of this study was to evaluate the effects of anethole, 1-methoxy-4-[(E)-1-propenyl]-benzene, on growth and apoptosis of oral tumor cells, and to identify the signaling pathways involved in its interaction with these cancer cells. Cancer gingival cells (Ca9-22) were treated with different concentrations of anethole. Cell proliferation and cytotoxic effects were measured by MTT and LDH assays. Cell death, autophagy and oxidative stress markers were assessed by flow cytometry while cell migration was determined by a healing capacity assay. The effect of anethole on apoptotic and pro-carcinogenic signaling pathways proteins was assessed by immunoblotting. Our results showed that anethole selectively and in a dose-dependent manner decreases the cell proliferation rate, and conversely induces toxicity and apoptosis in oral cancer cells. This killing effect was mediated mainly through NF-κB, MAPKinases, Wnt, caspase 3, 9 and PARP1 pathways. Anethole showed an ability to induce autophagy, decrease reactive oxygen species (ROS) production and increased intracellular glutathione (GSH) activity. Finally, anethole treatment inhibits the expression of oncogenes (cyclin D1) and up-regulated cyclin-dependent kinase inhibitor (p21WAF1), increases the expression of p53 gene, but inhibits the epithelial-mesenchymal transition markers. These results indicate that anethole could be a potential molecule for the therapy of oral cancer.


Asunto(s)
Derivados de Alilbenceno/farmacología , Anisoles/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Transfusion ; 60(10): 2348-2358, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32757244

RESUMEN

BACKGROUND: Intra bone marrow (IBM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic progenitor stem cell (HSPC) transplantation and thus increases the number of HSPC that engraft. Despite physical delivery into the bone marrow cavity, many donor cells are rapidly redistributed by vascular perfusion. Thus, the objective of our study was to evaluate the ability of human platelet lysates (hPL) to improve HSPC retention into the bone marrow and consequently to improve engraftment. STUDY DESIGN AND METHODS: HSPC were isolated from human umbilical cord blood. HSPC were seeded in the wells of a 24-well microplate and exposed to increasing concentrations of hPL with or without cytokines for 24 hours. Following priming, HSPC cells chemotaxis to rhSDF-1 was determined in vitro and engraftment in NSG mice was evaluated. RESULTS: Priming of cord blood CD34+ cells to a combination of hPL and cytokines resulted in a significant increase (up to 3-fold) in the expression of the CD34 antigen on HSPC. This effect was closely correlated to a significantly increased (up to 7-fold) migration toward a rhSDF-1 concentration gradient. In addition, IBM injection of CD34+ cells previously primed with hPL+cytokines into NSG mice showed significantly increased engraftment as measured by human platelet numbers, human CD45 and human CD34+ cells for unprimed and primed cells, respectively. CONCLUSION: The use of hPL + cytokines as a short-term priming treatment for UCB could be an advantageous strategy to improve clinical outcomes following IBM injection.


Asunto(s)
Antígenos CD34/sangre , Plaquetas/química , Mezclas Complejas/farmacología , Trasplante de Células Madre de Sangre del Cordón Umbilical , Citocinas/farmacología , Sangre Fetal/metabolismo , Supervivencia de Injerto/efectos de los fármacos , Células Madre de Sangre Periférica/metabolismo , Animales , Mezclas Complejas/química , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
7.
Transfusion ; 60(9): 2090-2096, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32632934

RESUMEN

Treatment of red blood cells with dithiothreitol (DTT) or trypsin effectively denatures CD38; however, this treatment damages other antigens, some of which are of clinical importance. Thus, other avenues to deplete daratumumab (DARA) from plasma samples should be explored. STUDY DESIGN AND METHODS: The Daudi B-cell line was found to express high levels of CD38 and was sonicated in a sonication buffer to achieve complete cell lysis. The resulting stroma preparation was centrifuged at 20 000g for 20 minutes and then mixed with 250 µL of DARA-plasma and incubated for 10 minutes at 37°C. The stroma-DARA-plasma mixture was centrifuged again, and the supernatant was collected and subjected to four additional rounds of adsorption with fresh stroma. DARA-depleted plasma was tested by gel indirect antiglobulin test (IAT). RESULTS: CD38 expression on Daudi cells was confirmed by flow cytometry. Gel IAT analysis showed that the incubation of plasma from DARA-treated patients with Daudi cells stroma resulted in a significant depletion of DARA but allowing detection of other alloantibodies of interest such as anti-K, anti-Yta , and anti-Gya . CONCLUSIONS: Daudi cell stroma is inexpensive, easy to prepare in large batches, and can be used as an off-the-shelf reagent. Incubation of plasma from DARA-treated patients with Daudi cell stroma can efficiently overcome DARA interference in serologic testing without affecting DTT- or trypsin-sensitive antigens.


Asunto(s)
ADP-Ribosil Ciclasa 1/biosíntesis , Anticuerpos Monoclonales/farmacología , Prueba de Coombs , Ditiotreitol/farmacología , Linfocitos B/metabolismo , Humanos , Células THP-1 , Células U937
8.
Cytotherapy ; 20(8): 990-1000, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30093326

RESUMEN

BACKGROUND: We recently showed that transient warming effects decreased the functional and adhesion properties of mesenchymal stromal cells (MSC) while post-thaw viability remained high. In an attempt to better predict functional impairment of cryopreserved MSC, we further analysed the correlation between viability, immunosuppressive activity and adhesion of cells exposed or not to warming events. METHODS: MSC prepared from six umbilical cords were frozen to -130°C and immediately transferred in a dry ice container or exposed to room temperature for 2 to 10 min (warming events) prior to storage in liquid nitrogen. Viability, functionality (inhibition of T-cell proliferation), adhesion and expression of various integrins were evaluated. RESULTS: The monotonic loss of functional activity with time was proportional to the length of warming events to which MSC were subjected and correlated with the monotonic loss of adhesion capacity. In contrast, post-thaw viability assessment did not predict functional impairment. Interestingly, flow cytometry analyses revealed the emergence of a FSClow population present in the viable cell fraction of freshly thawed MSC, which displayed poor adhesion capacity and expressed low levels of integrin ß5. The prevalence of this FSClow population increased with the length of warming events and correlated with impaired functional and adhesion properties. DISCUSSION: Our results reveal that loss of functional activity (4-day test) induced by transient warming events could be predicted by evaluating adhesion (2-hr test) or FSC profile (10-min test) of MSC immediately post-thaw. These observations could lead to the development of surrogate tests for rapidly assessing the functional quality of cryopreserved MSC.


Asunto(s)
Calor/efectos adversos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Cordón Umbilical/citología , Adhesión Celular/fisiología , Proliferación Celular , Tamaño de la Célula , Supervivencia Celular/fisiología , Células Cultivadas , Criopreservación/métodos , Citometría de Flujo , Congelación , Humanos
9.
Cytotherapy ; 19(8): 978-989, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28606762

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have shown promising results for the treatment of refractory acute graft-versus-host disease. While safety of MSC infusion has been demonstrated, the use of cryopreserved MSCs in clinical trials has raised concerns regarding the retention of their functional activity. This has led to the recommendation by experts in the field to use freshly harvested MSCs, even though this approach is much less practical from a logistic point of view. In the present study, we revisited the impact of cryopreservation on MSC functionality and addressed the possibility that warming events on frozen cells rather than cryopreservation per se could impact MSC functionality. METHODS: Following controlled-rate freezing to -130°C, umbilical cord-derived MSCs were left at room temperature (RT) for 2-10 min or on dry ice for 10 min, before being transferred into liquid nitrogen (LqN2). MSCs of each group were subsequently tested (viability, functionality and cellular damage) and compared with their freshly harvested counterparts. RESULTS: We demonstrated that freshly harvested MSCs as well as cryopreserved MSCs that were left on dry ice following step-down freezing have comparable viability, functionality and integrity. In contrast, cryopreserved MSCs that were left at RT before being transferred into LqN2 were functionally impaired and showed cellular damage upon thawing even though they exhibited high viability. DISCUSSION: Warming events after freezing and not cryopreservation per se significantly impair MSC functionality, indicating that cryopreserved MSCs can be an advantageous alternative to freshly harvested cells for therapeutic purposes.


Asunto(s)
Conservación de la Sangre/métodos , Criopreservación/métodos , Células Madre Mesenquimatosas/fisiología , Cordón Umbilical/citología , Proliferación Celular , Congelación , Humanos , Células Madre Mesenquimatosas/inmunología , Temperatura
10.
Cytokine ; 71(2): 181-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25461397

RESUMEN

The immune tolerance induced by IVIg treatment is generally attributed to its capacity to modulate the functions of antigen presenting cells and to induce the expansion of regulatory T cells by mechanisms that are not well-defined. Herein, we investigated the contribution of the TNF-α/TGF-ß/IDO axis to IVIg-induced immune tolerance. We show that high dose IVIg is able to markedly increase the expression (>3 fold) of the well-known tolerogenic cytokine TGF-ß in monocytes. In addition, the expression of TNF-α, a pleiotropic cytokine that controls TGF-ß-induced tolerogenic effects, as well as of its cognate receptors (TNF-R1 and TNF-R2) is also significantly increased following IVIg treatment. Along with TNF-α, the expression of the enzyme and signaling protein IDO, known to mediate TGF-ß dependant tolerogenic effect, is similarly increased following IVIg treatment. We thus propose that the complex interplay between plasticity of immune cells and environmental modifications in which the TNF-α/TGF-ß/IDO axis may represent a new mechanism contributing to the development of tolerance in IVIg-treated patients.


Asunto(s)
Inmunoglobulinas Intravenosas/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Monocitos/inmunología , Factor de Crecimiento Transformador beta/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Células Cultivadas , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Humanos , Inmunoglobulinas Intravenosas/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
11.
Immunobiology ; 219(9): 687-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24875729

RESUMEN

Allograft rejection and graft-versus-host disease (GvHD) are frequent complications following solid organ or stem cell transplantation in which T cell activation plays a central role. Despite the development of new immunosuppressive drugs that improve the success rate of transplantation, allograft survival continues to be a challenge. Recently, intravenous immunoglobulin (IVIg) has been proposed as prophylaxis and post-transplant treatment to reduce acute rejection episodes. IVIg is a therapeutic agent that is known to down-modulate T cell functions in patients with autoimmune disorders. To test the hypothesis that this immunomodulatory effect could be beneficial in the context of transplantation, we used mixed lymphocyte reactions (MLR) as an in vitro model of allograft rejection and GvHD. Our results show that IVIg strongly inhibits the MLR as evaluated by IL-2 secretion, a well-known marker of T cell activation. IVIg also modulates the secretion of other pro-(IL-6, IFN-γ) and anti-inflammatory (IL-1RA) cytokines. More importantly, we show that IVIg induces monocytes with a CD80(low) PD-L1(high) phenotype and that blockade of PD-L1 partially abrogates the inhibitory effect of IVIg. We have thus identified a new mechanism by which IVIg inhibits T cell functions in the context of transplantation, supporting the potential usefulness of IVIg in the prevention or treatment of graft rejection and GvHD.


Asunto(s)
Antígeno B7-H1/biosíntesis , Inmunoglobulinas Intravenosas/farmacología , Activación de Linfocitos/efectos de los fármacos , Prueba de Cultivo Mixto de Linfocitos , Monocitos/inmunología , Antígeno B7-H1/inmunología , Citometría de Flujo , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Inmunoglobulinas Intravenosas/inmunología , Técnicas In Vitro , Activación de Linfocitos/inmunología , Monocitos/efectos de los fármacos , Trasplante Homólogo
12.
PLoS One ; 8(12): e81983, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349168

RESUMEN

BACKGROUND: Airway inflammation is an important characteristic of asthma and has been associated with airway remodelling and bronchial hyperreactivity. The mucosal microenvironment composed of structural cells and highly specialised extracellular matrix is able to amplify and promote inflammation. This microenvironment leads to the development and maintenance of a specific adaptive response characterized by Th2 and Th17. Bronchial fibroblasts produce multiple mediators that may play a role in maintaining and amplifying this response in asthma. OBJECTIVE: To investigate the role of bronchial fibroblasts obtained from asthmatic subjects and healthy controls in regulating Th17 response by creating a local micro-environment that promotes this response in the airways. METHODS: Human bronchial fibroblasts and CD4(+)T cells were isolated from atopic asthmatics and non-atopic healthy controls. CD4(+)T were co-cultured with bronchial fibroblasts of asthmatic subjects and healthy controls. RORc gene expression was detected by qPCR. Phosphorylated STAT-3 and RORγt were evaluated by western blots. Th17 phenotype was measured by flow cytometry. IL-22, IL17, IL-6 TGF-ß and IL1-ß were assessed by qPCR and ELISA. RESULTS: Co-culture of CD4(+)T cells with bronchial fibroblasts significantly stimulated RORc expression and induced a significant increase in Th17 cells as characterized by the percentage of IL-17(+)/CCR6(+) staining in asthmatic conditions. IL-17 and IL-22 were increased in both normal and asthmatic conditions with a significantly higher amount in asthmatics compared to controls. IL-6, IL-1ß, TGF-ß and IL-23 were significantly elevated in fibroblasts from asthmatic subjects upon co-culture with CD4(+)T cells. IL-23 stimulates IL-6 and IL-1ß expression by bronchial fibroblasts. CONCLUSION: Interaction between bronchial fibroblasts and T cells seems to promote specifically Th17 cells profile in asthma. These results suggest that cellular interaction particularly between T cells and fibroblasts may play a pivotal role in the regulation of the inflammatory response in asthma.


Asunto(s)
Asma/genética , Asma/patología , Bronquios/patología , Linfocitos T CD4-Positivos/patología , Fibroblastos/patología , Interleucina-17/inmunología , Adulto , Asma/inmunología , Bronquios/inmunología , Bronquios/metabolismo , Linfocitos T CD4-Positivos/inmunología , Estudios de Casos y Controles , Microambiente Celular , Técnicas de Cocultivo , Femenino , Fibroblastos/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-17/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucinas/genética , Interleucinas/inmunología , Masculino , Persona de Mediana Edad , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Fosforilación , Cultivo Primario de Células , Receptores CCR6/genética , Receptores CCR6/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Interleucina-22
13.
J Immunol ; 191(12): 5941-50, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24244022

RESUMEN

Th17 cells play a critical role in the pathogenesis of rheumatoid arthritis (RA), but the mechanisms by which these cells regulate the development of RA are not fully understood. We have recently shown that α2ß1 integrin, the receptor of type I collagen, is the major collagen-binding integrin expressed by human Th17 cells. In this study, we examined the role of α2ß1 integrin in Th17-mediated destructive arthritis in the murine model of collagen-induced arthritis (CIA). We found that α2ß1 integrin is expressed on synovial Th17 cells from CIA mice and its neutralization with a specific mAb significantly reduced inflammation and cartilage degradation, and protected the mice from bone erosion. Blockade of α2ß1 integrin led to a decrease in the number of Th17 cells in the joints and to a reduction of IL-17 levels in CIA mice. This was associated with an inhibition of receptor activator of NF-κB ligand levels and osteoclast numbers, and reduction of bone loss. We further show that α2ß1 integrin is expressed on synovial Th17 cells from RA patients, and that its ligation with collagen costimulated the production of IL-17 by polarized human Th17 cells by enhancing the expression of retinoic acid receptor-related orphan receptor C through ERK and PI3K/AKT. Our findings provide the first evidence, to our knowledge, that α2ß1 integrin is an important pathway in Th17 cell activation in the pathogenesis of CIA, suggesting that its blockade can be beneficial for the treatment of RA and other Th17-associated autoimmune diseases.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Artritis Experimental/terapia , Artritis Reumatoide/metabolismo , Integrina alfa2beta1/fisiología , Osteólisis/prevención & control , Receptores de Colágeno/fisiología , Células Th17/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Especificidad de Anticuerpos , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Cartílago Articular/patología , Colágeno/farmacología , Cricetinae , Regulación hacia Abajo , Femenino , Humanos , Inflamación , Integrina alfa2beta1/antagonistas & inhibidores , Interleucina-17/sangre , Activación de Linfocitos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos DBA , FN-kappa B/fisiología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/biosíntesis , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Osteoclastos/patología , Osteólisis/etiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Ligando RANK/sangre , Receptores de Colágeno/antagonistas & inhibidores , Transducción de Señal , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Células Th17/fisiología
14.
Mol Immunol ; 47(11-12): 2112-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20471683

RESUMEN

BACKGROUND: Allergic asthma is characterized by infiltration of inflammatory cells into the airways. T cell-derived cytokines regulate both airway inflammation and remodelling. In the human airways, T cell-fibroblast interactions may have a role in regulating inflammation and remodelling. OBJECTIVES: To evaluate the effect of bronchial fibroblast-T cell interaction on profibrogenic cytokine release and determine the nature of the molecules involved in this interaction. METHODS: Human bronchial fibroblasts obtained from healthy and asthmatic donors were co-cultured with purified T cells derived from peripheral blood of the same subjects. IL-6 mRNA and protein levels were measured by real time PCR and ELISA. CD40, CD40L and alpha 5 beta 1 were evaluated by flow cytometry. Bronchial fibroblasts were stimulated with rsCD40L. Neutralisation was performed using neutralizing antibodies anti-CD40L and anti-alpha 5. RESULTS: Contact of T cells with bronchial fibroblasts up-regulated IL-6 at both gene and protein levels. This effect was significantly higher in fibroblasts from asthmatics than those from controls. Blocking CD40L and alpha 5 beta 1 integrin showed a significant inhibition of IL-6 expression in asthmatics but not in healthy controls. Stimulation of fibroblasts with recombinant soluble CD40L up-regulated IL-6 production in asthmatics but not in controls. Adhesion to fibronectin, a alpha 5 beta 1 integrin ligand, is increased in fibroblasts from asthmatics compared to fibroblasts from controls. CONCLUSION: These results showed that interaction of bronchial fibroblasts with T cells increases the production of profibrogenic cytokine IL-6. In asthmatic condition this interaction involves CD40L/alpha 5 beta 1. These results suggest that T cells and structural cells crosstalk in asthma may maintain local mucosal inflammation.


Asunto(s)
Asma/inmunología , Bronquios/citología , Ligando de CD40/fisiología , Comunicación Celular , Fibroblastos/fisiología , Integrina alfa5beta1/fisiología , Linfocitos T/fisiología , Adulto , Antígenos CD40/fisiología , Adhesión Celular , Células Cultivadas , Humanos , Interleucina-6/biosíntesis
15.
Chest ; 134(5): 911-918, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18689593

RESUMEN

BACKGROUND: Inflammatory changes such as subepithelial edema and excessive inflammatory cell infiltration have been observed in uvular tissues of obstructive sleep apnea (OSA) subjects. The levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha and interleukin-6 are elevated in the serum of apneic patients and have been proposed as mediators of muscle weakness. TNF-alpha has been shown to affect diaphragm contractility in mice and rabbit in vivo. OBJECTIVES: To assess total and compartmental TNF-alpha expression in uvular tissues of apneic and nonapneic patients. METHODS: Uvular tissues were collected from 14 snorers without sleep disorders breathing, 14 subjects with OSA (OSA 1 group) whose body mass index (BMI) was similar to that of snorers, and 12 additional obese OSA subjects (OSA 2 group) who underwent an uvulopalatopharyngoplasty. Sections were examined using immunohistochemistry and Western blot analysis. TNF-alpha expression was evaluated in the musculus uvulae (MU), epithelial layer, and perimuscular tissues from proximal uvular sections. RESULTS: TNF-alpha was more highly expressed in whole uvular protein extracts of apneic groups than in snorers ([mean +/- SEM] snorers, 100.5 +/- 3.0%; OSA 1 group, 127.1 +/- 6.9%; OSA 2 group, 140.7 +/- 11.0%; p = 0.01). In the muscular area, TNF-alpha levels were higher in the more obese OSA subjects than in the other two groups (snorers, 100.3 +/- 3%; OSA 1 group, 107.4 +/- 0.7%; OSA 2 group, 124.1 +/- 4.2%; p = 0.007). In the muscular area, TNF-alpha was correlated with BMI, but no relationship was found with the apnea-hypopnea index. CONCLUSIONS: We conclude that MU is the major TNF-alpha source in uvular tissue and that TNF-alpha is more highly expressed in the heaviest OSA patients compared to less obese OSA patients and nonapneic snorers.


Asunto(s)
Apnea Obstructiva del Sueño/metabolismo , Ronquido/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Úvula/metabolismo , Adulto , Biomarcadores/metabolismo , Western Blotting , Índice de Masa Corporal , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Polisomnografía , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA