Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746341

RESUMEN

Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.

2.
Adv Sci (Weinh) ; 10(34): e2304886, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870204

RESUMEN

Intravital microscopy (IVM) allows spatial and temporal imaging of different cell types in intact live tissue microenvironments. IVM has played a critical role in understanding cancer biology, invasion, metastases, and drug development. One considerable impediment to the field is the inability to interrogate the tumor microenvironment and its communication cascades during disease progression and therapeutic interventions. Here, a new implantable perfusion window chamber (PWC) is described that allows high-fidelity in vivo microscopy, local administration of stains and drugs, and longitudinal sampling of tumor interstitial fluid. This study shows that the new PWC design allows cyclic multiplexed imaging in vivo, imaging of drug action, and sampling of tumor-shed materials. The PWC will be broadly useful as a novel perturbable in vivo system for deciphering biology in complex microenvironments.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patología , Microscopía Intravital/métodos , Diagnóstico por Imagen , Perfusión
3.
Adv Biol (Weinh) ; 7(1): e2200178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047616

RESUMEN

New tools in the field of biocompatible chemistries are enabling researchers to probe immunological and genetic information with highly multiplexed capabilities. These bioorthogonal click chemistry reactions provide a platform for tumor and immune cell profiling for dozens of markers on the same cell sample simultaneously, providing a more complete snapshot of the disease.


Asunto(s)
Química Clic , Neoplasias/diagnóstico
4.
Adv Sci (Weinh) ; 9(24): e2200064, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750648

RESUMEN

The ability to observe cells in live organisms is essential for understanding their function in complex in vivo milieus. A major challenge today has been the limited ability to perform higher multiplexing beyond four to six colors to define cell subtypes in vivo. Here, a click chemistry-based strategy is presented for higher multiplexed in vivo imaging in mouse models. The method uses a scission-accelerated fluorophore exchange (SAFE), which exploits a highly efficient bioorthogonal mechanism to completely remove fluorescent signal from antibody-labeled cells in vivo. It is shown that the SAFE-intravital microscopy imaging method allows 1) in vivo staining of specific cell types in dorsal and cranial window chambers of mice, 2) complete un-staining in minutes, 3) in vivo click chemistries at lower (µm) and thus non-toxic concentrations, and 4) the ability to perform in vivo cyclic imaging. The potential utility of the method is demonstrated by 12 color imaging of immune cells in live mice.


Asunto(s)
Química Clic , Colorantes Fluorescentes , Animales , Anticuerpos , Química Clic/métodos , Colorantes Fluorescentes/química , Microscopía Intravital , Ratones , Coloración y Etiquetado
5.
Lab Chip ; 22(11): 2145-2154, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35514273

RESUMEN

Cellular analyses are increasingly used to diagnose diseases at point-of-care and global healthcare settings. Some analyses are simple as they rely on chromogenic stains (blood counts, malaria) but others often require higher multiplexing to define and quantitate cell populations (cancer diagnosis, immunoprofiling). Simplifying the latter with inexpensive solutions represents a current bottleneck in designing start-end pipelines. Based on the hypothesis that novel film adhesives could be used to create inexpensive disposable devices, we tested a number of different designs and materials, to rapidly perform 12-15 channel single-cell imaging. Using an optimized passive pumping layer-stack microfluidic (PLASMIC) device (<1 $ in supplies) we show that rapid, inexpensive cellular analysis is feasible.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Sistemas de Atención de Punto , Pruebas en el Punto de Atención
6.
Biofouling ; 35(6): 669-683, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31402749

RESUMEN

Desulfovibrio alaskensis G20 biofilms were cultivated on 316 steel, 1018 steel, or borosilicate glass under steady-state conditions in electron-acceptor limiting (EAL) and electron-donor limiting (EDL) conditions with lactate and sulfate in a defined medium. Increased corrosion was observed on 1018 steel under EDL conditions compared to 316 steel, and biofilms on 1018 carbon steel under the EDL condition had at least twofold higher corrosion rates compared to the EAL condition. Protecting the 1018 metal coupon from biofilm colonization significantly reduced corrosion, suggesting that the corrosion mechanism was enhanced through attachment between the material and the biofilm. Metabolomic mass spectrometry analyses demonstrated an increase in a flavin-like molecule under the 1018 EDL condition and sulfonates under the 1018 EAL condition. These data indicate the importance of S-cycling under the EAL condition, and that the EDL is associated with increased biocorrosion via indirect extracellular electron transfer mediated by endogenously produced flavin-like molecules.


Asunto(s)
Biopelículas , Desulfovibrio/fisiología , Acero/química , Incrustaciones Biológicas , Transporte Biológico , Corrosión , Electrones , Oxidación-Reducción , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA