Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Histochem Cytochem ; 71(11): 577-599, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818941

RESUMEN

The fibrotic remodeling in chronic obstructive pulmonary disease (COPD) is held responsible for narrowing of small airways and thus for disease progression. Oxidant damage and cell senescence factors are recently involved in airways fibrotic remodeling. Unfortunately, we have no indications on their sequential expression at anatomical sites in which fibrotic remodeling develops in smoking subjects. Using immunohistochemical techniques, we investigated in two strains of mice after cigarette smoke (CS) exposure what happens at various times in airway areas where fibrotic remodeling occurs, and if there also exists correspondence among DNA damage induced by oxidants, cellular senescence, the presence of senescence-secreted factors involved in processes that affect transcription, metabolism as well as apoptosis, and the onset of fibrous remodeling that appears at later times in mice exposed to CS. A clear positivity for fibrogenic cytokines TGF-ß, PDGF-B, and CTGF, and for proliferation marker PCNA around airways that will be remodeled is observed in both strains. Increased expression of p16ink4A senescence marker and MyoD is also seen in the same areas. p16ink4A and MyoD can promote cell cycle arrest, terminal differentiation of myofibroblasts, and can oppose their dedifferentiation. Of interest, an early progressive attenuation of SIRT-1 is observed after CS exposure. This intracellular regulatory protein can reduce premature cell senescence. These findings suggest that novel agents, which promote myofibroblast dedifferentiation and/or the apoptosis of senescent cells, may dampen progression of airway changes in smoking COPD subjects.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Humanos , Animales , Pulmón/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Senescencia Celular/genética , Fibrosis , Fumar/efectos adversos
2.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012370

RESUMEN

Once COPD is established, pulmonary lesions can only progress and smoking cessation by itself is not sufficient to switch off persistent lung inflammation. Similarly, in former-smoker mice, neutrophil inflammation persists and lung lesions undergo progressive deterioration. The molecular mechanisms underlying disease progression and the inefficiency of smoking cessation in quenching neutrophilic inflammation were studied in male C57 Bl/6 mice after 6 months of rest from smoking cessation. As compared with the mice that continued to smoke, the former-smoker mice showed reduced expression of histone deacetylases HDAC2 and SIRT1 and marked expression of p-p38 MAPK and p-Ser10. All these factors are involved in corticosteroid insensitivity and in perpetuating inflammation. Former-smoker mice do show persistent lung neutrophilic influx and a high number of macrophages which account for the intense staining in the alveolar structures of neutrophil elastase and MMP-9 (capable of destroying lung scaffolding) and 8-OHdG (marker of oxidative stress). "Alarmins" released from necrotic cells together with these factors can sustain and perpetuate inflammation after smoking cessation. Several factors and mechanisms all together are involved in sustaining and perpetuating inflammation in former-smoker mice. This study suggests that a better control of COPD in humans may be achieved by precise targeting of the various molecular mechanisms associated with different phenotypes of disease by using a cocktail of drug active toward specific molecules.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Cese del Hábito de Fumar , Animales , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , Inflamación/patología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
COPD ; 17(4): 429-443, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32597232

RESUMEN

COPD can manifest itself with different clinical phenotypes characterized by different disease progression and response to therapy. Although a remarkable number of studies have been carried out, little is known about the mechanisms underlying phenotypes that could guide the development of viable future therapies. Several murine strains mirror some human phenotypes after smoke exposure. It was of interest to investigate in these strains whether different pattern of activation of macrophages, and their distribution in lungs, is associated to changes characterizing different phenotypes. We chose C57Bl/6, and Lck deficient mice, which show significant emphysema, DBA/2 mice that develop changes similar to those of "pulmonary fibrosis/emphysema syndrome", p66Shc ko mice that develop bronchiolitis with fibrosis but not emphysema, and finally ICR mice that do not develop changes at 7 months after smoke exposure. Unlike other strains, ICR mice show very few activated macrophages (Mac-3 positive) mostly negative to M1 or M2 markers. On the other hand, a large population of M1 macrophages predominates in the lung periphery of DBA/2, C57Bl/6 and in Lck deficient mice, where emphysema is more evident. M2 macrophages are mainly observed in subpleural and intraparenchymal areas of DBA/2 mice and around bronchioles of p66Shc ko mice where fibrotic changes are present. We observed slight but significant differences in mRNA expression of iNOS, ECF-L, arginase 1, IL-4, IL-13 and TGF-ß between air- and smoke-exposed mice. These differences together with the different compartmentalization of macrophages may offer an explanation for the diversity of lesions and their distribution that we observed among the strains.


Asunto(s)
Macrófagos Alveolares/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumar/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos , Animales , Compartimento Celular , Modelos Animales de Enfermedad , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
4.
Int J Chron Obstruct Pulmon Dis ; 15: 1143-1154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547002

RESUMEN

Chronic obstructive pulmonary disease (COPD) is mainly associated with smoking habit. Inflammation is the major initiating process whereby neutrophils and monocytes are attracted into the lung microenvironment by external stimuli present in tobacco leaves and in cigarette smoke, which promote chemotaxis, adhesion, phagocytosis, release of superoxide anions and enzyme granule contents. A minority of smokers develops COPD and different molecular factors, which contribute to the onset of the disease, have been put forward. After many years of research, the pathogenesis of COPD is still an object of debate. In vivo models of cigarette smoke-induced COPD may help to unravel cellular and molecular mechanisms underlying the pathogenesis of COPD. The mouse represents the most favored animal choice with regard to the study of immune mechanisms due to its genetic and physiological similarities to humans, the availability of a large variability of inbred strains, the presence in the species of several genetic disorders analogous to those in man, and finally on the possibility to create models "made-to-measure" by genetic manipulation. The review outlines the different response of mouse strains to cigarette smoke used in COPD studies while retaining a strong focus on their relatability to human patients. These studies reveal the importance of innate immunity and cell surface receptors in the pathogenesis of pulmonary injury induced by cigarette smoking. They further advance the way in which we use wild type or genetically manipulated strains to improve our overall understanding of a multifaceted disease such as COPD. The structural and functional features, which have been found in the different strains of mice after chronic exposure to cigarette smoke, can be used in preclinical studies to develop effective new therapeutic agents for the different phenotypes in human COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Ratones , Enfermedad Pulmonar Obstructiva Crónica/etiología , Receptores de Superficie Celular , Humo/efectos adversos , Fumar/efectos adversos
5.
J Inflamm (Lond) ; 17: 21, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528233

RESUMEN

The current pandemic of COVID-19 has caused severe morbidity and mortality across the globe. People with a smoking history have severe disease outcomes by COVID-19 infection. Epidemiological studies show that old age and pre-existing disease conditions (hypertension and diabetes) result in severe disease outcome and mortality amongst COVID-19 patients. Evidences suggest that the S1 domain of the SARS-CoV-2 (causative agent of COVID-19) membrane spike has a high affinity towards the angiotensin-converting enzyme 2 (ACE2) receptor found on the host's lung epithelium. Likewise, TMPRSS2 protease has been shown to be crucial for viral activation thus facilitating the viral engulfment. The viral entry has been shown to cause 'cytokine storm' involving excessive production of pro-inflammatory cytokines/chemokines including IL-6, TNF-α, IFN-γ, IL-2, IL-7, IP-10, MCP-3 or GM-CSF, which is augmented by smoking. Future research could target these inflammatory-immunological responses to develop effective therapy for COVID-19. This mini-review provides a consolidated account on the role of inflammation and immune responses, proteases, and epithelial permeability by smoking and vaping during SARS-CoV2 infection with future directions of research, and provides a list of the potential targets for therapies particularly controlling cytokine storms in the lung.

6.
Br J Pharmacol ; 177(2): 267-281, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31499592

RESUMEN

BACKGROUND AND PURPOSE: A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH: C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS: Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS: S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Hiperreactividad Bronquial/metabolismo , Broncoconstricción , Fumar Cigarrillos/efectos adversos , Pulmón/metabolismo , Lisofosfolípidos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Esfingosina/análogos & derivados , Actinas/metabolismo , Animales , Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/patología , Hiperreactividad Bronquial/fisiopatología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/patología , Enfisema Pulmonar/fisiopatología , Transducción de Señal , Humo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Factores de Tiempo , Productos de Tabaco
7.
Am J Pathol ; 188(10): 2195-2206, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30031729

RESUMEN

The most important risk factor for chronic obstructive pulmonary disease (COPD) is cigarette smoking. Until now, smoking cessation (SC) is the only treatment effective in slowing down the progression of the disease. However, in many cases SC may only relieve the airflow obstruction and inflammatory response. Consequently, a persistent lung inflammation in ex-smokers is associated with progressive deterioration of respiratory functions. This is an increasingly important clinical problem whose mechanistic basis remains poorly understood. Available therapies do not adequately suppress inflammation and are not able to stop the vicious cycle that is at the basis of persistent inflammation. In addition, in mice after SC an ongoing inflammation and progressive lung deterioration is observed. After 4 months of smoke exposure mice show mild emphysematous changes. Lung inflammation is still present after SC, and emphysema progresses during the next 6-month period of observation. Destruction of alveolar walls is associated with airways remodeling (goblet cell metaplasia and peribronchiolar fibrosis). Modulation of formyl-peptide receptor signaling with antagonists mitigates inflammation and prevents deterioration of lung structures. This study suggests an important role for N-formylated peptides in the progression and exacerbation of COPD. Modulating formyl-peptide receptor signal should be explored as a potential new therapy for COPD.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Neumonía/fisiopatología , Receptores de Formil Péptido/antagonistas & inhibidores , Cese del Hábito de Fumar , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Líquido del Lavado Bronquioalveolar/citología , Fumar Cigarrillos/fisiopatología , Progresión de la Enfermedad , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/fisiopatología , Receptores de Formil Péptido/fisiología
9.
Oncotarget ; 8(22): 35962-35972, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28415591

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases.The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms.Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes.Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF.


Asunto(s)
Quimiotaxis/inmunología , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Adenosina Trifosfato/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores , Proliferación Celular , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Femenino , Fibrosis , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptores Purinérgicos P2Y2/genética , Pruebas de Función Respiratoria
10.
Am J Pathol ; 186(7): 1814-1824, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27157991

RESUMEN

The protein Lck (p56(Lck)) is a Src family tyrosine kinase expressed at all stages of thymocyte development and is required for maturation of T cells. The targeted disruption of Lck gene in mice results in severe block in thymocyte maturation with substantial reduction in the development of CD4(+)CD8(+) thymocytes, severe reduction of peripheral T cells, and disruption of T-cell receptor signaling with defective function of T-cell responses. To investigate the role of T lymphocyte in the development of cigarette smoke-induced pulmonary changes, Lck(-/-) mice and corresponding congenic wild-type mice were chronically exposed to cigarette smoke, and their lungs were analyzed by biochemical, immunologic, and morphometric methods. Smoking mice from both genotypes showed disseminated foci of emphysema and large areas of goblet cell metaplasia in bronchial and bronchiolar epithelium. Morphometric evaluation of lung changes and lung elastin determination confirmed that mice from both genotypes showed the same degree of emphysematous lesions. Thus, cigarette smoke exposure in the presence of severe reduction in number and function of peripheral T cells does not influence the development of pulmonary changes induced by cigarette smoke. The data obtained suggest that innate immunity is a leading actor in the early development of pulmonary changes in smoking mice and that the adaptive immune response may play a role at later stages.


Asunto(s)
Enfisema Pulmonar/inmunología , Fumar/efectos adversos , Linfocitos T/inmunología , Animales , Bronquios/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunohistoquímica , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfisema Pulmonar/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Fumar/inmunología
11.
Data Brief ; 6: 769-75, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26909387

RESUMEN

This data article contains data related to the research article entitled, "Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice" [1]. Asbestos fibers disrupt iron homeostasis in the human and mouse lung, leading to the deposition of iron (Fe) onto longer asbestos fibers which forms asbestos bodies (AB) [2]. Similar to Fe, calcium (Ca) is also deposited in the coats of the AB. This article presents data on iron and calcium in the mouse lung after asbestos exposure detected by histochemical evaluation.

12.
Toxicol Lett ; 241: 111-20, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26602167

RESUMEN

Human exposure to asbestos can cause a wide variety of lung diseases that are still a current major health concern, even if asbestos has been banned in many countries. It has been shown in many studies that asbestos fibers, ingested by alveolar macrophages, disrupt lung iron homeostasis by sequestering iron. Calcium can also be deposited on the fibers. The pathways along which iron and above all calcium interact with fibers are still unknown. Our aim was that of investigating if the iron accumulation induced by the inhaled asbestos fibers also involves calcium ions accumulation. Lung sections of asbestos-exposed mice were analyzed using an extremely sensitive procedure available at the synchrotron facilities, that provides morphological and chemical information based on X-ray fluorescence microspectroscopy (µ-XRF). In this study we show that (1) where conventional histochemical procedures revealed only weak deposits of iron and calcium, µ-XRF analysis is able to detect significant deposits of both iron and calcium on the inhaled asbestos fibers; (2) the extent of the deposition of these ions is proportionally directly related and (3) iron and calcium deposition on inhaled asbestos fibers is concomitant with the appearance of inflammatory and hyperplastic reactions.


Asunto(s)
Asbesto Crocidolita/toxicidad , Asbestosis/patología , Calcio/química , Hierro/química , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/patología , Pulmón/patología , Microscopía/instrumentación , Sincrotrones/instrumentación , Animales , Calcio/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Exposición por Inhalación , Hierro/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Distribución Tisular , Rayos X , Zinc/metabolismo
13.
Eur Respir J ; 47(1): 254-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26541524

RESUMEN

Purinergic receptor activation via extracellular ATP is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Nucleoside triphosphate diphosphohydrolase-1/CD39 hydrolyses extracellular ATP and modulates P2 receptor signalling.We aimed to investigate the expression and function of CD39 in the pathogenesis of cigarette smoke-induced lung inflammation in patients and preclinical mouse models. CD39 expression and soluble ATPase activity were quantified in sputum and bronchoalveolar lavage fluid (BALF) cells in nonsmokers, smokers and COPD patients or mice with cigarette smoke-induced lung inflammation. In mice, pulmonary ATP and cytokine concentrations, inflammation and emphysema were analysed in the presence or absence of CD39.Following acute cigarette smoke exposure CD39 was upregulated in BALF cells in smokers with further increases in COPD patients. Acute cigarette smoke exposure induced CD39 upregulation in murine lungs and BALF cells, and ATP degradation was accelerated in airway fluids. CD39 inhibition and deficiency led to augmented lung inflammation; treatment with ATPase during cigarette smoke exposure prevented emphysema.Pulmonary CD39 expression and activity are increased in COPD. CD39 deficiency leads to enhanced emphysema in mice, while external administration of a functional CD39 analogue partially rescues the phenotype. The compensatory upregulation of pulmonary CD39 might serve as a protective mechanism in cigarette smoke-induced lung damage.


Asunto(s)
Antígenos CD/genética , Apirasa/genética , Citocinas/metabolismo , Nicotiana , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo , Fumar/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Líquido del Lavado Bronquioalveolar , Quimiocina CXCL2/metabolismo , Femenino , Humanos , Inmunohistoquímica , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Purinérgicos P2/metabolismo , Transducción de Señal , Spumavirus , Adulto Joven
14.
Mediators Inflamm ; 2015: 545417, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26185363

RESUMEN

PURPOSE: Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF). Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. METHODS: ßENaC overexpressing mice (ßENaC-Tg) were backcrossed with PI3Kγ-deficient (PI3Kγ (KO)) mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF). Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240) on inflammatory cell number in BALF. RESULTS: Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3Kγ (KO)/ßENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of ßENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. CONCLUSIONS: These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/fisiología , Fibrosis Quística/terapia , Inflamación/prevención & control , Pulmón/patología , Infiltración Neutrófila , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/patología , Canales Epiteliales de Sodio/fisiología , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de las Quinasa Fosfoinosítidos-3
15.
PLoS One ; 10(3): e0119797, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790295

RESUMEN

The adaptor protein p66Shc regulates intracellular oxidant levels through the modulation of a forkhead-related transcription factor (FOXO3a). The genetic ablation of p66Shc (p66Shc-/-) renders mice resistant to oxidative stress and p53-dependent apoptosis. We investigated whether p66Shc ablation in mice modifies lung cellular and molecular responses to cigarette smoke (CS) exposure. No differences between wild type (WT) and p66Shc-/- mice were observed in terms of inflammation and oxidant burden after acute CS exposure; however,p66Shc ablation modifies specific features of chronic inflammation induced by repeated exposure to CS. Unlike WT mice, p66Shc-/- mice did not develop emphysema, showing protection toward oxidative damage to DNA and apoptosis as revealed by a trivial 8-hydroxyguanosine staining and faint TUNEL and caspase-3 positivity on alveolar epithelial cells. Unexpectedly, CS exposure in p66Shc-/- mice resulted in respiratory bronchiolitis with fibrosis in surrounded alveoli. Respiratory bronchiolitis was characterized by peribronchiolar infiltrates of lymphocytes and histiocytes, accumulation of ageing pigmented macrophages within and around bronchioles, and peribronchiolar fibrosis. The blockage of apoptosis interferes with the macrophage "clearance" from alveolar spaces, favouring the accumulation of aging macrophages into alveoli and the progressive accumulation of iron pigment in long-lived senescent cells. The presence of areas of interstitial and alveolar fibrosis in peripheral parenchyma often accompanied the bronchiolar changes. Macrophages from smoking p66Shc-/- mice elaborate M2 cytokines (i.e., IL-4 and IL-13) and enzymes (i.e., chitinase and arginase I), which can promote TGF-beta expression, collagen deposition, and fibrosis in the surrounding areas. We demonstrate here that resistance to oxidative stress and p53-dependent apoptosis can modify tissue responses to CS caused by chronic inflammation without influencing early inflammatory response to CS exposure.


Asunto(s)
Bronquiolitis/etiología , Bronquiolitis/genética , Fibrosis/genética , Proteínas Adaptadoras de la Señalización Shc/genética , Fumar/efectos adversos , Animales , Apoptosis , Arginasa/metabolismo , Bronquiolitis/patología , Quitinasas/metabolismo , Desmosina/metabolismo , Hidroxiprolina/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Pulmón/metabolismo , Pulmón/patología , Macrófagos/enzimología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo , Oxidorreductasas/metabolismo , Enfisema Pulmonar/patología , Proteínas Adaptadoras de la Señalización Shc/deficiencia , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
Am J Respir Cell Mol Biol ; 48(2): 198-203, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23144332

RESUMEN

Skeletal muscle dysfunction is a significant contributor to exercise limitation in pulmonary emphysema. This study investigated skeletal muscle oxidative metabolism before and after aerosol exposure to a long-acting ß-agonist (LABA), such as formoterol, in the pallid mouse (B6.Cg-Pldnpa/J), which has a deficiency in serum α(1)-antitrypsin (α(1)-PI) and develops spontaneous pulmonary emphysema. C57 BL/6J and its congener pallid mice of 8-12 and 16 months of age were treated with vehicle or formoterol aerosol challenge for 120 seconds. Morphological and morphometric studies and evaluations of mitochondrial adenosine diphosphate-stimulated respiration and of cytochrome oxidase activity on skeletal muscle were performed. Moreover, the mtDNA content in skeletal muscle and the mediators linked to muscle mitochondrial function and biogenesis, as well as TNF-α and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were also evaluated. The lungs of pallid mice at 12 and 16 months of age showed patchy areas of airspace enlargements, with the destruction of alveolar septa. No significant differences were observed in basal values of mitochondrial skeletal muscle oxidative processes between C57 BL/6J and pallid mice. Exposure to LABA significantly improved mitochondrial skeletal muscle oxidative processes in emphysematous mice, where the mtDNA content was significantly higher with respect to 8-month-old pallid mice. This effect was compared with a significant increase of PGC-1α in skeletal muscles of 16-month-old pallid mice, with no significant changes in TNF-α concentrations. In conclusion, in emphysematous mice that showed an increased mtDNA content, exposure to inhaled LABA can improve mitochondrial skeletal muscle oxidative processes. PGC-1α may serve as a possible mediator of this effect.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Broncodilatadores/farmacología , Modelos Animales de Enfermedad , Enfisema/metabolismo , Etanolaminas/farmacología , Músculo Esquelético/metabolismo , Animales , ADN Mitocondrial/metabolismo , Enfisema/fisiopatología , Fumarato de Formoterol , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiopatología , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/metabolismo , Factores de Transcripción , Factor de Necrosis Tumoral alfa/metabolismo
17.
Am J Respir Cell Mol Biol ; 48(2): 164-71, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23144333

RESUMEN

The role of the receptor for advanced glycation end products (RAGE) in promoting the inflammatory response through activation of NF-κB pathway is well established. Recent findings indicate that RAGE may also have a regulative function in apoptosis, as well as in cellular proliferation, differentiation, and adhesion. Unlike other organs, lung tissue in adulthood and during organ development shows relatively high levels of RAGE expression. Thus a role for the receptor in lung organogenesis and homeostasis may be proposed. To evaluate the role of RAGE in lung development and adult lung homeostasis, we generated hemizygous and homozygous transgenic mice overexpressing human RAGE, and analyzed their lungs from the fourth postnatal day to adulthood. Moderate RAGE hyperexpression during lung development influenced secondary septation, resulting in an impairment of alveolar morphogenesis and leading to significant changes in morphometric parameters such as airspace number and the size of alveolar ducts. An increase in alveolar cell apoptosis and a decrease in cell proliferation were demonstrated by the terminal deoxy-nucleotidyltransferase-mediated dUTP nick end labeling reaction, active caspase-3, and Ki-67 immunohistochemistry. Alterations in elastin organization and deposition and in TGF-ß expression were observed. In homozygous mice, the hyperexpression of RAGE resulted in histological changes resembling those changes characterizing human bronchopulmonary dysplasia (BPD). RAGE hyperexpression in the adult lung is associated with an increase of the alveolar destructive index and persistent inflammatory status leading to "destructive" emphysema. These results suggest an important role for RAGE in both alveolar development and lung homeostasis, and open new doors to working hypotheses on the pathogenesis of BPD and chronic obstructive pulmonary disease.


Asunto(s)
Envejecimiento , Pulmón/crecimiento & desarrollo , Receptores Inmunológicos/fisiología , Animales , Secuencia de Bases , Caspasa 3/metabolismo , Cartilla de ADN , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Antígeno Ki-67/metabolismo , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor para Productos Finales de Glicación Avanzada , Factor de Crecimiento Transformador beta/metabolismo
18.
Am J Respir Cell Mol Biol ; 47(3): 332-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22461430

RESUMEN

Cigarette smoke (CS) is the main causative factor of chronic obstructive pulmonary disease (COPD). Current research supports the concept that airway inflammation is central to the development and progression of the disease. Studies have demonstrated that neutrophils are increased in COPD lungs and that neutrophil-associated products correlate with the development and severity of COPD. The peptide FMLP is an active component of CS. FMLP interacts on the neutrophil and macrophage membranes with a high-affinity receptor subtype (FPR1) and with a low-affinity subtype FPRL1, promoting a chemotactic response, superoxide anion production, and degranulation. Bacterial colonization of the lower respiratory tract and lung cell damage may represent further sources of formyl peptides in patients with COPD. We investigated the role of FPR in a mouse model on lung inflammation and emphysema induced by CS. Here, we report the novel observation that genetic ablation of the FPR1 gene (Fpr1) confers protection from smoking-induced lung emphysema in mice. Compared with wild-type mice, Fpr1 knockout mice displayed marked decreases in the lung migration of neutrophils and macrophages after CS exposure. Upon transgenic approach, the changes in cell numbers were accompanied by marked modulation of the expression of genes implicated in the inflammatory response. Administration of the FPR1 antagonist cyclosporine H to wild-type mice attenuated the acute inflammatory response evoked by CS. These findings may have clinical significance because current smokers and subjects with emphysema showed increased FPR expression in bronchoalveolar fluids and on peripheral neutrophils. Modulating the FPR1 signal should be explored as a potential new therapy.


Asunto(s)
Enfisema/prevención & control , Receptores de Formil Péptido/genética , Fumar/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar , Enfisema/etiología , Enfisema/genética , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Formil Péptido/antagonistas & inhibidores
19.
Am J Respir Cell Mol Biol ; 44(3): 423-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20508069

RESUMEN

Extracellular ATP is up-regulated in the airways of patients with chronic obstructive pulmonary disease, and may contribute to the pathogenesis of the disease. However, the precise mechanisms are poorly understood. Our objective was to investigate the functional role of the ATP receptor P2X(7) in the pathogenesis of cigarette smoke (CS)-induced lung inflammation and emphysema in vivo. Expression of the P2X(7) receptor (P2X(7)R) was measured in lung tissue und immune cells of mice with CS-induced lung inflammation. In a series of experiments using P2X(7) antagonists and genetically engineered mice, the functional role of the P2X(7)R in CS-induced lung inflammation was explored. CS-induced inflammation was associated with an up-regulation of the P2X(7)R on blood and airway neutrophils, alveolar macrophages, and in whole lung tissue. Selective intrapulmonary inhibition of the P2X(7)R reduced CS-induced lung inflammation and prevented the development of emphysema. Accordingly, P2X(7)R knockout mice showed a reduced pulmonary inflammation after acute CS exposure. Experiments with P2X(7)R chimera animals revealed that immune cell P2X(7)R expression plays an important role in CS-induced lung inflammation and emphysema. Extracellular ATP contributes to the development of CS-induced lung inflammation and emphysema via activation of the P2X(7)R. Inhibition of this receptor may be a new therapeutic target for the treatment of chronic obstructive pulmonary disease.


Asunto(s)
Enfisema/metabolismo , Inflamación/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Humo , Fumar/efectos adversos , Adenosina Trifosfato/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Citometría de Flujo/métodos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
20.
J Immunol ; 185(1): 688-97, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20519655

RESUMEN

Extracellular ATP acts as a "danger signal" and can induce inflammation by binding to purinergic receptors. Chronic obstructive pulmonary disease is one of the most common inflammatory diseases associated with cigarette smoke inhalation, but the underlying mechanisms are incompletely understood. In this study, we show that endogenous pulmonary ATP levels are increased in a mouse model of smoke-induced acute lung inflammation and emphysema. ATP neutralization or nonspecific P2R-blockade markedly reduced smoke-induced lung inflammation and emphysema. We detected an upregulation the purinergic receptors subtypes on neutrophils (e.g., P2Y2R), macrophages, and lung tissue from animals with smoke-induced lung inflammation. By using P2Y(2)R deficient ((-/-)) animals, we show that ATP induces the recruitment of blood neutrophils to the lungs via P2Y(2)R. Moreover, P2Y(2)R deficient animals had a reduced pulmonary inflammation following acute smoke-exposure. A series of experiments with P2Y(2)R(-/-) and wild type chimera animals revealed that P2Y(2)R expression on hematopoietic cell plays the pivotal role in the observed effect. We demonstrate, for the first time, that endogenous ATP contributes to smoke-induced lung inflammation and then development of emphysema via activation of the purinergic receptor subtypes, such as P2Y(2)R.


Asunto(s)
Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/prevención & control , Antagonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P2/fisiología , Lesión por Inhalación de Humo/metabolismo , Lesión por Inhalación de Humo/prevención & control , Enfermedad Aguda , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/fisiología , Animales , Movimiento Celular/inmunología , Enfermedad Crónica , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , Enfisema Pulmonar/patología , Receptores Purinérgicos P2/deficiencia , Receptores Purinérgicos P2Y2 , Lesión por Inhalación de Humo/patología , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA