Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain ; 136(Pt 6): 1708-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23687123

RESUMEN

Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Hierro/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Adolescente , Adulto , Estudios de Cohortes , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Enfermedades Neurodegenerativas/diagnóstico , Adulto Joven
2.
Brain ; 136(Pt 2): 508-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23413262

RESUMEN

The ß-tropomyosin gene encodes a component of the sarcomeric thin filament. Rod-shaped dimers of tropomyosin regulate actin-myosin interactions and ß-tropomyosin mutations have been associated with nemaline myopathy, cap myopathy, Escobar syndrome and distal arthrogryposis types 1A and 2B. In this study, we expand the allelic spectrum of ß-tropomyosin-related myopathies through the identification of a novel ß-tropomyosin mutation in two clinical contexts not previously associated with ß-tropomyosin. The first clinical phenotype is core-rod myopathy, with a ß-tropomyosin mutation uncovered by whole exome sequencing in a family with autosomal dominant distal myopathy and muscle biopsy features of both minicores and nemaline rods. The second phenotype, observed in four unrelated families, is autosomal dominant trismus-pseudocamptodactyly syndrome (distal arthrogryposis type 7; previously associated exclusively with myosin heavy chain 8 mutations). In all four families, the mutation identified was a novel 3-bp in-frame deletion (c.20_22del) that results in deletion of a conserved lysine at the seventh amino acid position (p.K7del). This is the first mutation identified in the extreme N-terminus of ß-tropomyosin. To understand the potential pathogenic mechanism(s) underlying this mutation, we performed both computational analysis and in vivo modelling. Our theoretical model predicts that the mutation disrupts the N-terminus of the α-helices of dimeric ß-tropomyosin, a change predicted to alter protein-protein binding between ß-tropomyosin and other molecules and to disturb head-to-tail polymerization of ß-tropomyosin dimers. To create an in vivo model, we expressed wild-type or p.K7del ß-tropomyosin in the developing zebrafish. p.K7del ß-tropomyosin fails to localize properly within the thin filament compartment and its expression alters sarcomere length, suggesting that the mutation interferes with head-to-tail ß-tropomyosin polymerization and with overall sarcomeric structure. We describe a novel ß-tropomyosin mutation, two clinical-histopathological phenotypes not previously associated with ß-tropomyosin and pathogenic data from the first animal model of ß-tropomyosin-related myopathies.


Asunto(s)
Lisina/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Eliminación de Secuencia , Tropomiosina/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Enfermedades Musculares/patología , Tropomiosina/química , Adulto Joven , Pez Cebra
3.
Brain ; 135(Pt 11): 3392-403, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23107649

RESUMEN

Mutations in the nuclear-encoded mitochondrial maintenance gene RRM2B are an important cause of familial mitochondrial disease in both adults and children and represent the third most common cause of multiple mitochondrial DNA deletions in adults, following POLG [polymerase (DNA directed), gamma] and PEO1 (now called C10ORF2, encoding the Twinkle helicase) mutations. However, the clinico-pathological and molecular features of adults with RRM2B-related disease have not been clearly defined. In this multicentre study of 26 adult patients from 22 independent families, including five additional cases published in the literature, we show that extra-ocular neurological complications are common in adults with genetically confirmed RRM2B mutations. We also demonstrate a clear correlation between the clinical phenotype and the underlying genetic defect. Myopathy was a prominent manifestation, followed by bulbar dysfunction and fatigue. Sensorineural hearing loss and gastrointestinal disturbance were also important findings. Severe multisystem neurological disease was associated with recessively inherited compound heterozygous mutations with a mean age of disease onset at 7 years. Dominantly inherited heterozygous mutations were associated with a milder predominantly myopathic phenotype with a later mean age of disease onset at 46 years. Skeletal muscle biopsies revealed subsarcolemmal accumulation of mitochondria and/or cytochrome c oxidase-deficient fibres. Multiple mitochondrial DNA deletions were universally present in patients who underwent a muscle biopsy. We identified 18 different heterozygous RRM2B mutations within our cohort of patients, including five novel mutations that have not previously been reported. Despite marked clinical overlap between the mitochondrial maintenance genes, key clinical features such as bulbar dysfunction, hearing loss and gastrointestinal disturbance should help prioritize genetic testing towards RRM2B analysis, and sequencing of the gene may preclude performance of a muscle biopsy.


Asunto(s)
Proteínas de Ciclo Celular/genética , Eliminación de Gen , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/genética , Enfermedades Neuromusculares/genética , Ribonucleótido Reductasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Encefalopatías/complicaciones , Encefalopatías/genética , Estudios de Cohortes , Heterocigoto , Humanos , Persona de Mediana Edad , Miopatías Mitocondriales/complicaciones , Miopatías Mitocondriales/patología , Modelos Genéticos , Músculo Esquelético/patología , Mutación Missense/genética , Enfermedades Neuromusculares/complicaciones , Fenotipo
4.
Nat Genet ; 43(10): 929-31, 2011 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-21892158

RESUMEN

We report an allelic series of eight mutations in GATA2 underlying Emberger syndrome, an autosomal dominant primary lymphedema associated with a predisposition to acute myeloid leukemia. GATA2 is a transcription factor that plays an essential role in gene regulation during vascular development and hematopoietic differentiation. Our findings indicate that haploinsufficiency of GATA2 underlies primary lymphedema and predisposes to acute myeloid leukemia in this syndrome.


Asunto(s)
Factor de Transcripción GATA2/genética , Predisposición Genética a la Enfermedad , Leucemia Mieloide Aguda/genética , Linfedema/congénito , Adolescente , Adulto , Alelos , Niño , Femenino , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Genotipo , Haploinsuficiencia , Células Madre Hematopoyéticas/metabolismo , Humanos , Recién Nacido , Linfedema/genética , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Síndrome
5.
Am J Med Genet A ; 152A(9): 2287-96, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20803646

RESUMEN

Four reports have been published on an association between acute myeloid leukaemia (AML) and primary lymphedema, with or without congenital deafness. We report seven new cases, including one extended family, confirming this entity as a genetic syndrome. The lymphedema typically presents in one or both lower limbs, before the hematological abnormalities, with onset between infancy and puberty and frequently affecting the genitalia. The AML is often preceded by pancytopenia or myelodysplasia with a high incidence of monosomy 7 in the bone marrow (five propositi and two relatives). Associated anomalies included hypotelorism, epicanthic folds, long tapering fingers and/or neck webbing (four patients), recurrent cellulitis in the affected limb (four patients), generalized warts (two patients), and congenital, high frequency sensorineural deafness (one patient). Children with lower limb and genital lymphedema should be screened for hematological abnormalities and immunodeficiency.


Asunto(s)
Linfedema/complicaciones , Síndromes Mielodisplásicos/complicaciones , Anomalías Múltiples , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos Par 7 , Femenino , Genitales/anomalías , Humanos , Lactante , Recién Nacido , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/genética , Deformidades Congénitas de las Extremidades Inferiores , Linfedema/genética , Masculino , Monosomía , Síndromes Mielodisplásicos/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA