Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Adv Sci (Weinh) ; : e2405942, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958529

RESUMEN

A novel Fe2Mo3O8/MoO2@MoS2 nanocomposite is synthesized for extremely sensitive detection of NH3 in the breath of kidney disease patients at room temperature. Compared to MoS2, α-Fe2O3/MoS2, and MoO2@MoS2, it shows the optimal gas-sensing performance by optimizing the formation of Fe2Mo3O8 at 900 °C. The annealed Fe2Mo3O8/MoO2@MoS2 nanocomposite (Fe2Mo3O8/MoO2@MoS2-900 °C) sensor demonstrates a remarkably high selectivity of NH3 with a response of 875% to 30 ppm NH3 and an ultralow detection limit of 3.7 ppb. This sensor demonstrates excellent linearity, repeatability, and long-term stability. Furthermore, it effectively differentiates between patients at varying stages of kidney disease through quantitative NH3 measurements. The sensing mechanism is elucidated through the analysis of alterations in X-ray photoelectron spectroscopy (XPS) signals, which is supported by density functional theory (DFT) calculations illustrating the NH3 adsorption and oxidation pathways and their effects on charge transfer, resulting in the conductivity change as the sensing signal. The excellent performance is mainly attributed to the heterojunction among MoS2, MoO2, and Fe2Mo3O8 and the exceptional adsorption and catalytic activity of Fe2Mo3O8/MoO2@MoS2-900 °C for NH3. This research presents a promising new material optimized for detecting NH3 in exhaled breath and a new strategy for the early diagnosis and management of kidney disease.

2.
Front Public Health ; 12: 1387330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841686

RESUMEN

Background: Owing to the long penetration depth of gamma (γ)-rays, individuals working in ionizing radiation environments are chronically exposed to low-dose γ-radiation, resulting in cognitive changes. Dose rate significantly affects radiation-induced biological effects; however, its role in chronic low-dose γ-irradiation-induced cognitive impairment remains unclear. We aimed to investigate whether chronic low-dose γ-irradiation at low-dose-rate (LDR) could induce cognitive impairment and to compare the cognitive alteration caused by chronic low-dose γ-irradiation at LDR and high-dose-rate (HDR). Methods: The rats were exposed to γ-irradiation at a LDR of 6 mGy/h and a HDR of 20 mGy/h for 30 days (5 h/day). Functional imaging was performed to assess the brain inflammation and blood-brain barrier (BBB) destruction of rats. Histological and immunofluorescence analyses were used to reveal the neuron damage and the activation of microglia and astrocytes in the hippocampus. RNA sequencing was conducted to investigate changes in gene expression in hippocampus. Results: The rats in the LDR group exhibited more persistent cognitive impairment than those in the HDR group. Furthermore, irradiated rats showed brain inflammation and a compromised BBB. Histologically, the number of hippocampal neurons were comparable in the LDR group but were markedly decreased in the HDR. Additionally, activated M1-like microglia and A1-like astrocytes were observed in the hippocampus of rats in the LDR group; however, only M1-like microglia were activated in the HDR group. Mechanistically, the PI3K-Akt signaling pathway contributed to the different cognitive function change between the LDR group and HDR group. Conclusion: Compared with chronic low-dose γ-irradiation at HDR, LDR induced more severe cognitive impairment which might involve PI3K/Akt signaling pathway.


Asunto(s)
Disfunción Cognitiva , Rayos gamma , Animales , Rayos gamma/efectos adversos , Ratas , Disfunción Cognitiva/etiología , Masculino , Hipocampo/efectos de la radiación , Ratas Sprague-Dawley , Relación Dosis-Respuesta en la Radiación , Barrera Hematoencefálica/efectos de la radiación
3.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893499

RESUMEN

Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 µM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.


Asunto(s)
Antineoplásicos , Apoptosis , Cisplatino , Ácidos Hidroxámicos , Cisplatino/farmacología , Humanos , Apoptosis/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Antineoplásicos/farmacología , Células A549 , Inhibidores de Histona Desacetilasas/farmacología , Línea Celular Tumoral , Acetilación/efectos de los fármacos , Sinergismo Farmacológico
4.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643940

RESUMEN

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Asunto(s)
Proliferación Celular , Células Madre Mesenquimatosas , Ovario , Femenino , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Fertilidad/efectos de los fármacos , Receptores de Neuropéptido/metabolismo , Humanos , Regulación Alostérica/efectos de los fármacos , Receptores de Ghrelina/metabolismo , Cricetinae , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Dimerización
5.
Mol Med Rep ; 29(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426545

RESUMEN

Liver sinusoidal endothelial cells (LSECs) have an important role in hepatic ischemia­reperfusion injury (I/R), but the specific molecular mechanism of action is unknown. LSEC proliferation is regulated and fenestration is maintained via the Sentrin/SUMO­specific protease 1 (SENP1)/hypoxia­inducible factor­1α (HIF­1α) signaling axis under hypoxic conditions. In the present study, a hypoxia­reoxygenation (H­R) injury model was established using mouse LSECs to explore the relationship between SENP1 and H­R injury in vitro, and the specific underlying mechanism was identified, revealing new targets for the clinical attenuation of hepatic I/R injury. Following the culture of LSECs under H­R conditions, it was demonstrated that the expression of SENP1 was upregulated by reverse transcription­quantitative polymerase chain reaction and western blotting (WB). In addition, scanning electron microscopy indicated that fenestrae damage was increased, a Cell Counting Kit­8 assay demonstrated that the proliferation of cells was impaired and flow cytometry showed that apoptosis was increased. After silencing SENP1 expression with short interfering RNA, the proliferation activity of LSECs decreased, the fenestrae damage increased, the apoptosis rate increased and the expression levels of SENP1, HIF­1α, heme oxygenase and Bcl­2 were downregulated (as demonstrated by WB), while the expression levels of apoptosis­related proteins, cleaved­caspase­3 and Bax, were upregulated. Enzyme­linked immunosorbent assay detection showed that the level of vascular endothelial growth factor in the supernatant decreased and the level of IL­6 and TNF­α increased. Following the administration of an HIF­1α signaling pathway agonist, the situation was reversed. These results therefore suggested that SENP1 attenuated the reduction in proliferation, apoptosis and fenestration of LSECs observed following H­R injury through the HIF­1α signaling pathway. In conclusion, SENP1 may attenuate H­R injury in LSECs in a HIF­1α signaling pathway­dependent manner.


Asunto(s)
Células Endoteliales , Péptido Hidrolasas , Animales , Ratones , Capilares/metabolismo , Hipoxia de la Célula , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Hígado/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398629

RESUMEN

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Estrofantidina , Humanos , Estrofantidina/farmacología , Caspasa 3/farmacología , Línea Celular Tumoral , Apoptosis , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
7.
J Am Chem Soc ; 146(6): 3689-3699, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38296825

RESUMEN

G-quadruplex (G4) selective stabilizing ligands can regulate c-MYC gene expression, but the kinetic basis remains unclear. Determining the effects of ligands on c-MYC promoter G4s' folding/unfolding kinetics is challenging due to the polymorphic nature of G4s and the high energy barrier to unfold c-MYC promoter G4s. Here, we used single-molecule magnetic tweezers to manipulate a duplex hairpin containing a c-MYC promoter sequence to mimic the transiently denatured duplex during transcription. We measured the effects of six commonly used G4s binding ligands on the competition between quadruplex and duplex structures, as well as the folding/unfolding kinetics of G4s. Our results revealed two distinct roles for G4s selective stabilization: CX-5461 is mainly acting as c-MYC G4s stabilizer, reducing the unfolding rate (ku) of c-MYC G4s, whereas PDS and 360A also act as G4s chaperone, accelerating the folding rates (kf) of c-MYC G4s. qRT-PCR results obtained from CA46 and Raji cell lines demonstrated that G4s stabilizing ligands can downregulate c-MYC expression, while G4s stabilizer CX-5461 exhibited the strongest c-MYC gene suppression. These results shed light on the potential of manipulating G4s' folding/unfolding kinetics by ligands for precise regulation of promoter G4-associated biological activities.


Asunto(s)
G-Cuádruplex , Genes myc , Regiones Promotoras Genéticas , Ligandos
8.
BMJ Open Respir Res ; 10(1)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37940355

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with limited therapeutic options and high lethality, related to alveolar type II epithelial (ATII) cell dysregulation, the abnormal repair of alveolar epithelial cells and activation of fibroblasts promote the development of pulmonary fibrosis. Fatty acid binding protein 1 (FABP1) was significantly downregulated in the fibrotic state by proteomics screening in our previous date, and the ATII cell dysregulation can be mediated by FABP1 via regulating fatty acid metabolism and intracellular transport. The aim of this study was to evaluate the role and potential mechanism of FABP1 in the development of pulmonary fibrosis. METHODS: Proteomics screening was used to detect changes of the protein profiles in two different types (induced by bleomycin and silica, respectively) of pulmonary fibrosis models. The localisation of FABP1 in mouse lung was detected by Immunofluorescence and immunohistochemistry. Experimental methods such as lung pathology, micro-CT, western blotting, small animal imaging in vivo, EdU, etc were used to verify the role of FABP1 in pulmonary fibrosis. RESULTS: The expression of FABP1 in the mouse lung was significantly reduced in the model of pulmonary fibrosis from our proteomic analysis and immunological methods, the double immunofluorescence staining showed that FABP1 was mainly localised in type II alveolar epithelial cells. Additionally, the expression of FABP1 was negatively correlated with the progression of pulmonary fibrosis. Further in vivo and in vitro experiments showed that overexpression of FABP1 alleviated pulmonary fibrosis by protecting alveolar epithelium from injury and promoting cell survival. CONCLUSION: Our findings provide a proof-of-principle that FABP1 may represent an effective treatment for pulmonary fibrosis by regulating alveolar epithelial regeneration, which may be associated with the fatty acid metabolism in ATII cells.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Ratones , Humanos , Animales , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Fibrosis Pulmonar Idiopática/patología , Regeneración , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología
9.
Dalton Trans ; 52(35): 12478-12489, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602756

RESUMEN

Ruthenium(II) polypyridyl complexes have drawn growing attention due to their photophysical properties and anticancer activity. Herein we report four ruthenium(II) polypyridyl complexes [(N^N)2RuII(L)]2+ (1-4, L = 4-anilinoquinazoline derivatives, N^N = bidentate ligands with bis-nitrogen donors) as multi-functional anticancer agents. The epidermal growth factor receptor (EGFR) is overexpressed in a broad range of cancer cells and related to many kinds of malignance. EGFR inhibitors, such as gefitinib and erlotinib, have been approved as clinical anticancer drugs. The EGFR-inhibiting 4-anilinoquinazoline ligands greatly enhanced the in vitro anticancer activity of these ruthenium(II) polypyridyl complexes against a series of human cancer cell lines compared to [Ru(bpy)2(phen)], but interestingly, these complexes were actually not potent EGFR inhibitors. Further mechanism studies revealed that upon irradiation with visible light, complexes 3 and 4 generated a high level of singlet oxygen (1O2), and their in vitro anticancer activities against human non-small-cell lung (A549), cervical (HeLa) and squamous (A431) cancer cells were significantly improved. Specifically, complex 3 displayed potent phototoxicity upon irradiation with blue light, of which the photo-toxicity indexes (PIs) against HeLa and A431 cells were 11 and 8.3, respectively. These complexes exhibited strong fluorescence emission at ca. 600 nm upon excitation at about 450 nm. A subcellular distribution study by fluorescence microscopy imaging and secondary ion mass spectrometry imaging (ToF-SIMS) demonstrated that complex 3 mainly localized at the cytoplasm and complex 4 mainly localized in the nuclei of cells. Competitive binding with ctDNA showed that complex 4 was more favorable to bind to the DNA minor groove than complex 3. These differences support that complex 3 possibly exerts its anticancer activities majorly by photo-induced 1O2 generation and complex 4 by binding to DNA.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Rutenio , Humanos , Ligandos , Luz , Receptores ErbB
10.
Small ; 19(48): e2303035, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605329

RESUMEN

Engineered nanomaterials hold great promise to improve the specificity of disease treatment. Herein, a fully protein-based material is obtained from nonpathogenic Escherichia coli (E. coli), which is capable of morphological transformation from globular to fibrous in situ for inducing tumor cell apoptosis. The protein-based material P1 is comprised of a ß-sheet-forming peptide KLVFF, pro-apoptotic protein BAK, and GFP along with targeting moieties. The self-assembled nanoparticles of P1 transform into nanofibers in situ in the presence of cathepsin B, and the generated nanofibrils favor the dimerization of functional BH3 domain of BAK on the mitochondrial outer membrane, leading to efficient anticancer activity both in vitro and in vivo via mitochondria-dependent apoptosis through Bcl-2 pathway. To precisely manipulate the morphological transformation of biosynthetic molecules in living cells, a spatiotemporally controllable anticancer system is constructed by coating P1-expressing E. coli with cationic conjugated polyelectrolytes to release the peptides in situ under light irradiation. The biosynthetic peptide-based enzyme-catalytic transformation strategy in vivo would offer a novel perspective for targeted delivery and shows great potential in precision disease therapeutics.


Asunto(s)
Escherichia coli , Proteínas Proto-Oncogénicas c-bcl-2 , Escherichia coli/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
11.
Curr Med Sci ; 43(4): 831-837, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37480412

RESUMEN

OBJECTIVE: Polyphenols are complex compounds containing multiple phenolic hydroxyl groups. They are widely distributed in plants and have antioxidant activities. Whether the antioxidant activities of the cultivated varieties of Echinacea are similar to or better than those of the wild ones and the relationship between the accumulation of polyphenols and their antioxidant activities are still not clear. METHODS: Folin-Ciocalteu method, high performance liquid chromatography (HPLC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferric ion reducing antioxidant power (FRAP) assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulfonic acid (ABTS) radical scavenging assay, and Fe2+ chelating ability assay were used, respectively, to detect the total polyphenols and 5 kinds of caffeic acid derivatives (chicoric acid, caffeic acid, caftaric acid, chlorogenic acid, and 1,5-dicaffeoylquinic acid) in the roots, stems, leaves, and flowers, and the antioxidant activities of 3 varieties of Echinacea: E. purpurea L., cultivar E. purpurea 'Aloha', and E. purpurea 'White Swan'. RESULTS: E. purpurea L. had the highest contents of total polyphenols, 5 caffeic acid derivatives and antioxidant activities, followed by E. purpurea 'White Swan' and E. purpurea 'Aloha', respectively. E. purpurea 'White Swan' had the strongest ability to remove the DPPH, ABTS•+ and free radicals, and to chelate Fe2+; E. purpurea L. had the strongest ability to reduce FRAP. The correlation analyses revealed that the contents of total polyphenols and caffeic acid derivatives of E. purpurea L. and E. purpurea 'White Swan' were correlated with their antioxidant activities. CONCLUSION: E. purpurea L. was the most appropriate material for the development of medicinal plants. E. purpurea 'White Swan' could be used as a substitute for E. purpurea L. in terms of its antioxidant activity.


Asunto(s)
Productos Biológicos , Echinacea , Polifenoles , Antioxidantes/farmacología , Adyuvantes Inmunológicos
12.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175463

RESUMEN

The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Células A549 , Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Fosforilación Oxidativa , Células HEK293 , Proteómica , Necrosis , Apoptosis , ADN/metabolismo , Adenosina Trifosfato/metabolismo , Rutenio/farmacología , Complejos de Coordinación/farmacología
13.
Am J Respir Crit Care Med ; 207(2): 160-172, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35984444

RESUMEN

Rationale: Sustained activation of lung fibroblasts and the resulting oversynthesis of the extracellular matrix are detrimental events for patients with interstitial lung diseases (ILDs). Lung biopsy is a primary evaluation technique for the fibrotic status of ILDs, and is also a major risk factor for triggering acute deterioration. Fibroblast activation protein (FAP) is a long-known surface biomarker of activated fibroblasts, but its expression pattern and diagnostic implications in ILDs are poorly defined. Objectives: The present study aims to comprehensively investigate whether the expression intensity of FAP could be used as a potential readout to estimate or measure the amounts of activated fibroblasts in ILD lungs quantitatively. Methods: FAP expression in human primary lung fibroblasts as well as in clinical lung specimens was first tested using multiple experimental methods, including real-time quantitative PCR (qPCR), Western blot, immunofluorescence staining, deep learning measurement of whole slide immunohistochemistry, as well as single-cell sequencing. In addition, FAP-targeted positron emission tomography/computed tomography imaging PET/CT was applied to various types of patients with ILD, and the correlation between the uptake of FAP tracer and pulmonary function parameters was analyzed. Measurements and Main Results: Here, it was revealed, for the first time, FAP expression was upregulated significantly in the early phase of lung fibroblast activation event in response to a low dose of profibrotic cytokine. Single-cell sequencing data further indicate that nearly all FAP-positive cells in ILD lungs were collagen-producing fibroblasts. Immunohistochemical analysis validated that FAP expression level was closely correlated with the abundance of fibroblastic foci on human lung biopsy sections from patients with ILDs. We found that the total standard uptake value (SUV) of FAP inhibitor (FAPI) PET (SUVtotal) was significantly related to lung function decline in patients with ILD. Conclusions: Our results strongly support that in vitro and in vivo detection of FAP can assess the profibrotic activity of ILDs, which may aid in early diagnosis and the selection of an appropriate therapeutic window.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Enfermedades Pulmonares Intersticiales/patología , Pulmón/patología , Fibrosis , Fibroblastos/metabolismo
14.
Clin Rheumatol ; 42(3): 941-947, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36441397

RESUMEN

Lung transplantation is an ultimate lifesaving treatment for many patients with end-stage lung disease, whereas whether it is an optional intervention for the anti-melanoma differentiation-associated gene 5 (anti-MDA5)-positive dermatomyositis (DM)-associated rapid progressive interstitial lung disease (RP-ILD) remain controversial. We report two patients diagnosed with anti-MDA5-positive DM-associated RP-ILD, who were both bridging to lung transplant with extracorporeal membrane oxygenation (ECMO) after failing to respond to extensive immunosuppressants. The first patient received full rehabilitation, but the second patient died of DM flare at the early-stage post-lung transplantation. Most of the clinical information was parallel in these two patients except the anti-MDA5 antibody level, which gradually decreased and became negative in the first patient but always hovering in high titers in the second patient, although both of the two patients received standard immunosuppressive regimen for prevention of rejection after lung transplantation. A total of 11 patients with anti-MDA5-positive DM-associated RP-ILD who underwent lung transplantation from the literature were identified. Most patients (10/11, 90.1%) were successfully discharged and without DM flare during the follow-up period post-lung transplantation. Nine of them were followed up more than 1 year, and anti-MDA-5 antibody was reported to be negative in four patients, whereas the others were unavailable. Combined with the case series in the literature, our limited experience suggests that lung transplantation is a promising therapeutic option for end-stage patients with anti-MDA5-positive DM-associated RP-ILD, with ECMO as a bridge to lung transplantation, if necessary. However, clearance or a downtrend of anti-MDA5 antibody may be required pre-transplant to avoid DM flare and recurrent RP-ILD post-transplantation.


Asunto(s)
Dermatomiositis , Enfermedades Pulmonares Intersticiales , Trasplante de Pulmón , Humanos , Autoanticuerpos , Helicasa Inducida por Interferón IFIH1 , Inmunosupresores/uso terapéutico , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/cirugía , Enfermedades Pulmonares Intersticiales/diagnóstico
15.
Acta Diabetol ; 59(11): 1469-1477, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35947193

RESUMEN

AIMS: Valerate and caproate are two subtypes of short-chain fatty acids produced by gut microbiota. We aimed to measure the serum valerate and caproate levels and analyze the associations between them and renal prognosis of diabetic nephropathy (DN). METHODS: The serum samples of patients with biopsy-confirmed diagnosis of DN were collected in the First Affiliated Hospital of Zhejiang University, from April 1, 2013, to March 31, 2018. One hundred patients were included and divided into an early DN group (eGFR ≥ 60 ml/min, n = 42) and an advanced DN group (eGFR < 60 ml/min, n = 58). The valerate and caproate were measured using gas chromatography-mass spectrometry. Participants were followed up until the cutoff date of August 31, 2018, or if they met the primary endpoint of end-stage renal disease (ESRD). RESULTS: There were 71 males and 29 females in this study, and 29 patients developed ESRD. We observed a significant lower concentration of valerate and caproate in the advanced DN group. There were negative correlations between valerate and glomerular classification (r = - 0.20, P = 0.03) and between caproate and interstitial fibrosis and tubular atrophy (IFTA) (r = - 0.24, P = 0.01). And there were positive correlations between valerate or caproate and eGFR (r = 0.22, P = 0.02; r = 0.38, P < 0.01). Multivariate Cox analysis revealed higher levels of valerate and caproate were negatively related to progression to ESRD (HR = 0.024, P = 0.016; HR = 0.543, P = 0.030). The area under the curve values of valerate and caproate levels were 0.66 and 0.63, respectively, in predicting progression to ESRD. CONCLUSION: This study showed alterations in serum valerate and caproate in DN and demonstrates lower valerate and caproate levels with progression of DN to ESRD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Microbioma Gastrointestinal , Fallo Renal Crónico , Biopsia , Caproatos , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Femenino , Humanos , Riñón , Masculino , Pronóstico , Valeratos
16.
Cell Commun Signal ; 20(1): 104, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35836260

RESUMEN

BACKGROUND: Lung resident mesenchymal stem cells (LR-MSCs) play an important role in idiopathic pulmonary fibrosis (IPF) by transforming into myofibroblasts, thereby losing their repair ability. Evidence suggests that key proteins of multiple signaling pathways are involved in myofibroblast differentiation of LR-MSCs, such as ß-Catenin and GLI family zinc finger 1 (GLI1). These proteins are regulated by SUMO (small ubiquitin-like modifier) modification, which is a post-translational modification that promotes protein degradation, while Sumo specific protein 1 (SENP1)-mediated deSUMOylation produces the opposite biological effects. Therefore, we speculated that SENP1 might be a potential target for treating pulmonary fibrosis by preventing the myofibroblast differentiation of LR-MSCs. METHODS: LR-MSCs were isolated from mice by using immunomagnetic beads. The extracted LR-MSCs were identified by flow cytometric analysis and multilineage differentiation assays. Lentivirus packaged shRNA silenced the expression of SENP1 in vitro and vivo. The silencing efficacy of SENP1 was verified by real-time quantitative PCR. The effect of down-regulated SENP1 on the myofibroblast differentiation of LR-MSCs was assessed by Immunofluorescence and Western blot. Immunoprecipitation was used to clarify that SENP1 was a key target for regulating the activity of multiple signaling pathways in the direction of LR-MSCs differentiation. LR-MSCs resident in the lung was analyzed with in vivo imaging system. HE and Masson staining was used to evaluate the therapeutic effect of LR-MSCs with SENP1 down-regulation on the lung of BLM mice. RESULTS: In this study, we found that the myofibroblast differentiation of LR-MSCs in IPF lung tissue was accompanied by enhanced SENP1-mediated deSUMOylation. The expression of SENP1 increased in LR-MSCs transition of bleomycin (BLM)-induced lung fibrosis. Interfering with expression of SENP1 inhibited the transformation of LR-MSCs into myofibroblasts in vitro and in vivo and restored their therapeutic effect in BLM lung fibrosis. In addition, activation of the WNT/ß-Catenin and Hedgehog/GLI signaling pathways depends on SENP1-mediated deSUMOylation. CONCLUSIONS: SENP1 might be a potential target to restore the repair function of LR-MSCs and treat pulmonary fibrosis. Video Abstract.


Asunto(s)
Fibrosis Pulmonar Idiopática , Células Madre Mesenquimatosas , Animales , Bleomicina , Diferenciación Celular , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/farmacología , Proteínas Hedgehog/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Vía de Señalización Wnt , beta Catenina/metabolismo
17.
RSC Adv ; 12(8): 4865-4873, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35425505

RESUMEN

To develop an efficient solid acid catalysts for the Friedel-Crafts alkylation reaction, especially for involving bulky molecules, the direct synthesis of hierarchical nanocrystalline ß zeolites were achieved by using amphiphilic organosilane ([(CH3O)3SiC3H6N(CH3)2C18H37]Cl, TPOAC) as collaborative structure-directing agent (SDA). The growth evolution of ß crystals and the influence of TPOAC/SiO2 molar ratio on the mesoporous structure, crystal size, and acidic properties of ß zeolites were investigated and discussed in detail. The characterization results reveal that intracrystalline mesopores and intercrystalline mesopores/macropores via the stacking of ß nanocrystals were generated over the hierarchical ß zeolites. Moreover, most of the strong acid sites were well remained compared with the conventional microporous ß zeolite. Consequently, the hierarchical nanocrystalline ß zeolite synthesized under the optimized synthesis conditions shows improved specific catalytic activity of acid sites (turnover number, TON) in alkylation of benzene with benzyl alcohol, which can be attributed to the integrated balance of considerable mesoporosity, accessibility of the acid sites, and well-remained strong acid sites in the hierarchical ß zeolite.

18.
Rapid Commun Mass Spectrom ; 36(15): e9316, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35416361

RESUMEN

RATIONALE: The identification and evaluation of novel biomarkers are essential to clinical diagnosis and prognosis of colorectal cancer (CRC). Serum phosphopeptides have been recognized as a potential signature pool for cancers; therefore, we aim to profile the expression of serum phosphopeptides and to evaluate their feasibility in CRC diagnosis. METHODS: We conducted the characterization and absolute quantification of endogenous phosphopeptides in sera using liquid chromatography-mass spectrometry analysis in combination with enrichment of phosphopeptides by ZrAs-Fe3 O4 @SiO2 nanoparticles and use of deuterium-labeled standards. Differentially expressed analysis of four phosphopeptides was performed, generating a two-phosphopeptide-based biomarker, LF3-4 , by logistic regression analysis, where LF3-4 is equal to (5.85 - 5.13 × [F3] - 3.57 × [F4]), and [F3] and [F4] are the concentration of phosphopeptides DpSGEGDFLAEGGGVR and ADpSGEGDFLAEGGGVR in sera, respectively. RESULTS: The LF3-4 values showed significant difference in CRC cases compared with controls, and yielded a specificity of 100%, leading to correct classification of 56 (93%) out of 60 CRC patients, including 12 (92.3%) of 13 CRC cases in stage I. Double-blind validation showed that 97.5% of CRC cases were discriminated accurately. CONCLUSIONS: The LF3-4 value was firstly verified to be a potential biomarker for CRC diagnosis, and may expand our view in underlying mechanisms for CRC.


Asunto(s)
Neoplasias Colorrectales , Fosfopéptidos , Cromatografía Liquida/métodos , Neoplasias Colorrectales/diagnóstico , Método Doble Ciego , Humanos , Espectrometría de Masas/métodos , Fosfopéptidos/química , Dióxido de Silicio
19.
Anal Bioanal Chem ; 414(18): 5561-5571, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35275218

RESUMEN

Manganese-enhanced MRI (MEMRI) is a powerful tool to study neuronal activity and microarchitecture in vivo. Yet the influence of exogenous manganese on the brain of the Parkinson's disease (PD) model mouse is poorly understood. Laser ablation connected to inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging for tissue section is an ideal tool to simultaneously analyze the metabolism of endogenous metal ions. In this study, DJ-1 knockout PD model mice were subjected to an MnCl2 saline treatment and the distribution of Mn and several other endogenous metal ions in brain regions was assessed by MEMRI and LA-ICP-MS imaging. The results demonstrated that Mn mainly deposited in subcortical regions, such as ventricles, hippocampus (HC), medial preoptic nucleus (MPO), lateral septal nucleus (LS), and ventromedial hypothalamic nucleus (VMH). The enhanced signal-to-noise ratio (S/N) determined by MEMRI for Mn is closely related to the signal in LA-ICP-MS imaging. Significantly, the treatment of MnCl2 disturbs the homeostasis of iron, zinc, copper, and calcium in the DJ-1 mouse, which could result in more severe symptoms of PD. Therefore, the application of MEMRI in the study of neurological disease must be made with caution.


Asunto(s)
Terapia por Láser , Enfermedad de Parkinson , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Iones , Imagen por Resonancia Magnética/métodos , Manganeso , Espectrometría de Masas/métodos , Metales/análisis , Ratones , Enfermedad de Parkinson/diagnóstico por imagen
20.
Nucleic Acids Res ; 50(6): 3070-3082, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258624

RESUMEN

Pyridostatin (PDS) is a well-known G-quadruplex (G4) inducer and stabilizer, yet its target genes have remained unclear. Herein, applying MS proteomics strategy, we revealed PDS significantly downregulated 22 proteins but upregulated 16 proteins in HeLa cancer cells, of which the genes both contain a number of G4 potential sequences, implying that PDS regulation on gene expression is far more complicated than inducing/stabilizing G4 structures. The PDS-downregulated proteins consequently upregulated 6 proteins to activate cyclin and cell cycle regulation, suggesting that PDS itself is not a potential anticancer agent, at least toward HeLa cancer cells. Importantly, SUB1, which encodes human positive cofactor and DNA lesion sensor PC4, was downregulated by 4.76-fold. Further studies demonstrated that the downregulation of PC4 dramatically promoted the cytotoxicity of trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) toward HeLa cells to a similar level of cisplatin, contributable to retarding the repair of 1,3-trans-PtTz crosslinked DNA lesion mediated by PC4. These findings not only provide new insights into better understanding on the biological functions of PDS but also implicate a strategy for the rational design of novel multi-targeting platinum anticancer drugs via conjugation of PDS as a ligand to the coordination scaffold of transplatin for battling drug resistance to cisplatin.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Aminoquinolinas , Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/química , Cisplatino/farmacología , ADN/química , Células HeLa , Humanos , Ácidos Picolínicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA