Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Acta Pharm Sin B ; 14(4): 1693-1710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572108

RESUMEN

Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs-NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.

2.
BMJ Open ; 14(4): e081263, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684277

RESUMEN

INTRODUCTION: Type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) often coexist and increase risk for developing liver fibrosis and diabetes complications if no effective measures are taken. Dietary intervention is known to be able to achieve diabetes remission, while evidence regarding the long-term effect on liver fat is limited for comorbidity management of type 2 diabetes and NAFLD. This study aims to investigate the long-term effect of a Chinese Medical Nutrition Therapy (CMNT) diet accompanied by intermittent energy restriction on reducing liver fat and glycated haemoglobin (HbA1c) in patients with type 2 diabetes and NAFLD. METHODS AND ANALYSIS: This is a multicentre two-armed parallel randomised controlled trial study. 120 participants with type 2 diabetes and NAFLD will be recruited from the physical examination centres of multiple hospitals in China. Participants will be randomly allocated 1:1 to either the CMNT group or the usual care group. The CMNT group will be instructed to consume the provided specific meal replacement Chinese medicinal foods consisting of 6 cycles of 5 consecutive days followed by 10 days of regular food intake. The usual care group will be given standard dietary advice. Primary outcomes are changes in the controlled attenuation parameter value by transient elastography and HbA1c level. Secondary outcomes include differences in anthropometrics, clinical blood markers, questionnaires, gut microbiota and metabolomics. Further follow-up will be performed at 6 months, 1 year and 2 years. ETHICS AND DISSEMINATION: The study protocol was approved by the Biomedical Research Ethics Committee of Hunan Agricultural University (BRECHAU20200235).The results will be disseminated via relevant peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT05439226.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/terapia , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/terapia , Hemoglobina Glucada/metabolismo , China , Ensayos Clínicos Controlados Aleatorios como Asunto , Terapia Nutricional/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Hígado/metabolismo , Estudios Multicéntricos como Asunto , Diagnóstico por Imagen de Elasticidad
3.
Tissue Cell ; 87: 102314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309204

RESUMEN

Lymphatic metastasis is a common metastasis of lung adenocarcinoma (LUAD). The current study illustrated the action of lncRNA NKX2-1-AS1 in lymphangiogenesis in LUAD and the underlying mechanisms. Clinical tissue samples were collected for determining NKX2-1-AS1 expression. Then, H441 and H661 cells were selected to perform gain- and loss-of-function assays for dissecting the roles of NKX2-1-AS1 in LUAD cell proliferation and migration. Besides, H441 and H661 cell supernatant was harvested to stimulate HLECs for assessing tube formation ability. Interaction among NKX2-1-AS1, ERG, and fatty acid binding protein 4 (FABP4) was validated through luciferase and RIP assays. NKX2-1-AS1 was highly-expressed in LUAD tissues. Silencing NKX2-1-AS1 suppressed H441 and H661 cell proliferation and migration, reduced expression levels of lymphangiogenesis-related factors (LYVE-1, VEGF-C, VEGFR3, VEGF-A, VEGFR2, and CCR7), and inhibited HLEC tube formation. Interaction validation demonstrated that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG. Overexpression of FABP4 could effectively block the inhibition role of NKX2-1-AS1 silencing in lymphangiogenesis in H441 and H661 cells. This study provided evidence that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG to facilitate the proliferation and migration of LUAD cells and tube formation of HLECs, thus participating in lymphangiogenesis.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Adenocarcinoma/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfangiogénesis/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
4.
Bioorg Chem ; 145: 107215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394920

RESUMEN

Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated protein kinase involved in neurogenesis and human cancer. Recent studies have revealed a novel functional role for DCLK1 in inflammatory signaling, thus positioning it as a novel target kinase for respiratory inflammatory disease treatment. In this study, we designed and synthesized a series of NVP-TAE684-based derivatives as novel anti-inflammatory agents targeting DCLK1. Bio-layer interferometry binding screening and kinase assays of the NVP-TAE684 derivatives led to the discovery of an effective DCLK1 inhibitor (a24), with an IC50 of 179.7 nM. Compound a24 effectively inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages with higher potency than the lead compound. Mechanistically, compound a24 inhibited LPS-induced inflammation by inhibiting DCLK1-mediated IKKß phosphorylation. Furthermore, compound a24 showed in vivo anti-inflammatory activity in an LPS-challenged acute lung injury model. These findings suggest that compound a24 may serve as a novel candidate for the development of DCLK1 inhibitors and a potential therapeutic agent for the treatment of inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Quinasas Similares a Doblecortina , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Proteínas Serina-Treonina Quinasas , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167018, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185350

RESUMEN

Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Ratas , Animales , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo
6.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919475

RESUMEN

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratas , Ratones , Animales , Miocitos Cardíacos/metabolismo , Isoproterenol/toxicidad , Receptores Adrenérgicos beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Macrófagos/metabolismo
7.
Acta Pharmacol Sin ; 45(4): 765-776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110583

RESUMEN

Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 µg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 µM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.


Asunto(s)
Hipertensión Renal , Riñón , Nefritis , Proteasas Ubiquitina-Específicas , Animales , Ratones , Angiotensina II/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Hipertensión Renal/enzimología , Hipertensión Renal/patología , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis/enzimología , Nefritis/patología , Proteasas Ubiquitina-Específicas/metabolismo , Modelos Animales de Enfermedad
8.
Am J Physiol Cell Physiol ; 326(2): C400-C413, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105755

RESUMEN

Kidney fibrosis is a prominent pathological feature of hypertensive kidney diseases (HKD). Recent studies have highlighted the role of ubiquitinating/deubiquitinating protein modification in kidney pathophysiology. Ovarian tumor domain-containing protein 6 A (OTUD6A) is a deubiquitinating enzyme involved in tumor progression. However, its role in kidney pathophysiology remains elusive. We aimed to investigate the role and underlying mechanism of OTUD6A during kidney fibrosis in HKD. The results revealed higher OTUD6A expression in kidney tissues of nephropathy patients and mice with chronic angiotensin II (Ang II) administration than that from the control ones. OTUD6A was mainly located in tubular epithelial cells. Moreover, OTUD6A deficiency significantly protected mice against Ang II-induced kidney dysfunction and fibrosis. Also, knocking OTUD6A down suppressed Ang II-induced fibrosis in cultured tubular epithelial cells, whereas overexpression of OTUD6A enhanced fibrogenic responses. Mechanistically, OTUD6A bounded to signal transducer and activator of transcription 3 (STAT3) and removed K63-linked-ubiquitin chains to promote STAT3 phosphorylation at tyrosine 705 position and nuclear translocation, which then induced profibrotic gene transcription in epithelial cells. These studies identified STAT3 as a direct substrate of OTUD6A and highlighted the pivotal role of OTUD6A in Ang II-induced kidney injury, indicating OTUD6A as a potential therapeutic target for HKD.NEW & NOTEWORTHY Ovarian tumor domain-containing protein 6 A (OTUD6A) knockout mice are protected against angiotensin II-induced kidney dysfunction and fibrosis. OTUD6A promotes pathological kidney remodeling and dysfunction by deubiquitinating signal transducer and activator of transcription 3 (STAT3). OTUD6A binds to and removes K63-linked-ubiquitin chains of STAT3 to promote its phosphorylation and activation, and subsequently enhances kidney fibrosis.


Asunto(s)
Hipertensión Renal , Nefritis , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Angiotensina II/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Riñón/metabolismo , Hipertensión Renal/metabolismo , Hipertensión Renal/patología , Células Epiteliales/metabolismo , Fibrosis , Neoplasias Ováricas/metabolismo , Ubiquitinas/metabolismo , Ratones Endogámicos C57BL
9.
Cell Death Dis ; 14(7): 419, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443105

RESUMEN

Obesity increases the risk for cardiovascular diseases and induces cardiomyopathy. Chronic inflammation plays a significant role in obesity-induced cardiomyopathy and may provide new therapeutic targets for this disease. Doublecortin-like kinase 1 (DCLK1) is an important target for cancer therapy and the role of DCLK1 in obesity and cardiovascular diseases is unclear. Herein, we showed that DCLK1 was overexpressed in the cardiac tissue of obese mice and investigated the role of DCLK1 in obesity-induced cardiomyopathy. We generated DCLK1-deleted mice and showed that macrophage-specific DCLK1 knockout, rather than cardiomyocyte-specific DCLK1 knockout, prevented high-fat diet (HFD)-induced heart dysfunction, cardiac hypertrophy, and fibrosis. RNA sequencing analysis showed that DCLK1 deficiency exerted cardioprotective effects by suppressing RIP2/TAK1 activation and inflammatory responses in macrophages. Upon HFD/palmitate (PA) challenge, macrophage DCLK1 mediates RIP2/TAK1 phosphorylation and subsequent inflammatory cytokine release, which further promotes hypertrophy in cardiomyocytes and fibrogenesis in fibroblasts. Finally, a pharmacological inhibitor of DCLK1 significantly protects hearts in HFD-fed mice. Our study demonstrates a novel role and a pro-inflammatory mechanism of macrophage DCLK1 in obesity-induced cardiomyopathy and identifies DCLK1 as a new therapeutic target for the treatment of this disease. Upon HFD/PA challenge, DCLK1 induces RIP2/TAK1-mediated inflammatory response in macrophages, which subsequently promotes cardiac hypertrophy and fibrosis. Macrophage-specific DCLK1 deletion or pharmacological inhibition of DCLK1 protects hearts in HFD-fed mice.


Asunto(s)
Cardiomiopatías , Enfermedades Cardiovasculares , Ratones , Animales , Quinasas Similares a Doblecortina , Enfermedades Cardiovasculares/patología , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Cardiomegalia/metabolismo , Transducción de Señal/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Palmitatos/farmacología , Macrófagos/metabolismo , Fibrosis
10.
Cell Mol Life Sci ; 80(7): 184, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340199

RESUMEN

Macrophage activation has been shown to play an essential role in renal fibrosis and dysfunction in hypertensive chronic kidney disease. Dectin-1 is a pattern recognition receptor that is also involved in chronic noninfectious diseases through immune activation. However, the role of Dectin-1 in Ang II-induced renal failure is still unknown. In this study, we found that Dectin-1 expression on CD68 + macrophages was significantly elevated in the kidney after Ang II infusion. We assessed the effect of Dectin-1 on hypertensive renal injury using Dectin-1-deficient mice infused by Angiotensin II (Ang II) at 1000 ng/kg/min for 4 weeks. Ang II-induced renal dysfunction, interstitial fibrosis, and immune activation were significantly attenuated in Dectin-1-deficient mice. A Dectin-1 neutralizing antibody and Syk inhibitor (R406) were used to examine the effect and mechanism of Dectin-1/Syk signaling axle on cytokine secretion and renal fibrosis in culturing cells. Blocking Dectin-1 or inhibiting Syk significantly reduced the expression and secretion of chemokines in RAW264.7 macrophages. The in vitro data showed that the increase in TGF-ß1 in macrophages enhanced the binding of P65 and its target promotor via the Ang II-induced Dectin-1/Syk pathway. Secreted TGF-ß1 caused renal fibrosis in kidney cells through Smad3 activation. Thus, macrophage Dectin-1 may be involved in the activation of neutrophil migration and TGF-ß1 secretion, thereby promoting kidney fibrosis and dysfunction.


Asunto(s)
Angiotensina II , Hipertensión Renal , Ratones , Animales , Angiotensina II/farmacología , Angiotensina II/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Neutrófilos/metabolismo , Riñón/metabolismo , Hipertensión Renal/metabolismo , Hipertensión Renal/patología , Macrófagos/metabolismo , Fibrosis
11.
Theranostics ; 13(7): 2263-2280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153745

RESUMEN

Rationale: Understanding the molecular mechanisms of deleterious cardiac remodeling is important for the development of treatments for heart failure. Recent studies have highlighted a role of deubiquitinating enzymes in cardiac pathophysiology. In the present study, we screened for alteration of deubiquitinating enzymes in experimental models of cardiac remodeling, which indicated a potential role of OTU Domain-Containing Protein 1 (OTUD1). Methods: Wide-type or OTUD1 knockout mice with chronic angiotensin II infusion and transverse aortic constriction (TAC) were utilized to develop cardiac remodeling and heart failure. We also overexpressed OTUD1 in mouse heart with AAV9 vector to validate the function of OTUD1. LC-MS/MS analysis combined with Co-IP was used to identify the interacting proteins and substrates of OTUD1. Results: We found that OTUD1 is elevated in mouse heart tissues following chronic angiotensin II administration. OTUD1 knockout mice were significantly protected against angiotensin II-induced cardiac dysfunction, hypertrophy, fibrosis and inflammatory response. Similar results were obtained in the TAC model. Mechanistically, OTUD1 bounds to the SH2 domain of STAT3 and causes deubiquitination of STAT3. Cysteine at position 320 of OTUD1 exerts K63 deubiquitination to promote STAT3 phosphorylation and nuclear translocation, thereby increasing STAT3 activity to induce inflammatory responses, fibrosis, and hypertrophy in cardiomyocytes. Finally, OTUD1 overexpression by AAV9 vector increases Ang II-induced cardiac remodeling in mice and OTUD1-regulated responses can be inhibited by blocking STAT3. Conclusion: Cardiomyocyte OTUD1 promotes pathological cardiac remodeling and dysfunction by deubiquitinating STAT3. These studies have highlighted a novel role of OTUD1 in hypertensive heart failure and identified STAT3 as a target of OTUD1 in mediating these actions.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Ratones , Angiotensina II/farmacología , Cromatografía Liquida , Enzimas Desubicuitinizantes/metabolismo , Fibrosis , Insuficiencia Cardíaca/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Espectrometría de Masas en Tándem , Remodelación Ventricular/fisiología , Factor de Transcripción STAT3
12.
Int Immunopharmacol ; 120: 110292, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182452

RESUMEN

BACKGROUND: NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE: This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS: ELISA and Western blot were used to determine the IL-1ß and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS: We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION: Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Sesquiterpenos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos , Escherichia coli/metabolismo , Ratones Endogámicos C57BL , Lactonas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sepsis/tratamiento farmacológico , Ratones Noqueados
13.
Int Immunopharmacol ; 118: 110065, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004347

RESUMEN

BACKGROUND: Acute tubular necrosis (ATN) is a common type of acute renal failure. Recent studies have shown that NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis in macrophages plays a crucial role in the progression of ATN. Previously, we synthesized an anti-inflammatory compound 15a based on Tanshinone IIA (Tan IIA). In the present study, we found that compound 15a exhibited a greater inhibitory effect on NLRP3-mediated pyroptosis than Tan IIA in vitro. METHODS: C57BL/6 and NLRP3-knockout (NLRP3-KO) mice were intraperitoneally injected with LPS or folic acid (FA) to develop ATN. In vitro, bone marrow-derived macrophages (BMDMs) were treated with LPS for 3 h and then treated with ATP for 0.5 h. RESULTS: We explored the mechanism by which compound 15a inhibited NLRP3 inflammasome in BMDMs as well as its renal protective effect against ATN in mice. We found that compound 15a exhibited a protective effect on mitochondria and reduced the production of mitochondrial reactive oxygen species (mtROS). Moreover, we revealed that compound 15a remarkably reduced the production of mtROS by promoting mitophagy, which resulted in the inhibition of NLRP3 inflammasome to alleviates ATN in mice. CONCLUSION: In summary, compound 15a inhibited NLRP3-mediated inflammation by activating mitophagy in macrophages to alleviate ATN. Our results identified compound 15a as a promising candidate for the treatment of NLRP3-driven ATN.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Mitofagia , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Macrófagos , Especies Reactivas de Oxígeno , Ratones Noqueados , Inflamación/tratamiento farmacológico , Necrosis/tratamiento farmacológico
14.
Int Immunopharmacol ; 119: 110139, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099944

RESUMEN

Atherosclerosis (AS) is a chronic inflammatory disease. Recent studies have showed that stimulator of interferon genes (STING), an important protein in innate immunity, mediates pro-inflammatory activation of macrophages in the development of AS. Tetrandrine (TET) is a natural bisbenzylisoquinoline alkaloid isolated from Stepania tetrandra and possesses anti-inflammatory activities, with unknown effects and mechanisms in AS. In this study, we explored the anti-atherosclerotic effects of TET and investigated the underlying mechanisms. Mouse primary peritoneal macrophages (MPMs) are challenged with cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) or oxidized LDL (oxLDL). We found that pretreatment with TET dose-dependently inhibited cGAMP- or oxLDL-induced STING/ TANK-binding kinase 1 (TBK1) signaling, then suppressing nuclear factor kappa-B (NF-κB) activation and pro-inflammatory factor expression in MPMs. ApoE-/- mice were fed a high-fat diet (HFD) to develop an atherosclerotic phenotype. Administration of TET at 20 mg/kg/day significantly reduced HFD-induced atherosclerotic plaques, accompanied with decreased macrophage infiltration, inflammatory cytokine production, fibrosis, and STING/TBK1 activation in aortic plaque lesions. In summary, we demonstrate that TET inhibits STING/TBK1/NF-κB signaling pathway to reduce inflammation in oxLDL-challenged macrophages and alleviate atherosclerosis in HFD-fed ApoE-/- mice. These findings proved that TET could be a potential therapeutic candidate for the treatment of atherosclerosis-related diseases.


Asunto(s)
Aterosclerosis , Bencilisoquinolinas , Placa Aterosclerótica , Animales , Ratones , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Bencilisoquinolinas/farmacología , Inflamación/metabolismo , Macrófagos , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166710, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37054997

RESUMEN

Cardiovascular diseases are the primary cause of mortality in patients with diabetes and obesity. Hyperglycemia and hyperlipidemia in diabetes alters cardiac function, which is associated with broader cellular processes such as aberrant inflammatory signaling. Recent studies have shown that a pattern recognition receptor called Dectin-1, expressed on macrophages, mediates pro-inflammatory responses in innate immunity. In the present study, we examined the role of Dectin-1 in the pathogenesis of diabetic cardiomyopathy. We observed increased Dectin-1 expression in heart tissues of diabetic mice and localized the source to macrophages. We then investigated the cardiac function in Dectin-1-deficient mice with STZ-induced type 1 diabetes and high-fat-diet-induced type 2 diabetes. Our results show that Dectin-1 deficient mice are protected against diabetes-induced cardiac dysfunction, cardiomyocyte hypertrophy, tissue fibrosis, and inflammation. Mechanistically, our studies show that Dectin-1 is important for cell activation and induction of inflammatory cytokines in high-concentration glucose and palmitate acid (HG + PA)-challenged macrophages. Deficiency of Dectin-1 generate fewer paracrine inflammatory factors capable of causing cardiomyocyte hypertrophy and fibrotic responses in cardiac fibroblasts. In conclusion, this study provides evidence that Dectin-1 mediates diabetes-induced cardiomyopathy through regulating inflammation. Dectin-1 may be a potential target to combat diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Hipertrofia , Inflamación , Macrófagos/metabolismo
16.
Int Immunopharmacol ; 119: 110066, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058752

RESUMEN

Atherosclerosis is a common chronic inflammatory disease. Recent studies have highlighted the key role of macrophages and inflammation in process of atherosclerotic lesion formation. A natural product, tussilagone (TUS), has previously exhibited anti-inflammatory activities in other diseases. In this study, we explored the potential effects and mechanisms of TUS on the inflammatory atherosclerosis. Atherosclerosis was induced in ApoE-/- mice by feeding them with a high-fat diet (HFD) for 8 weeks, followed by administration of TUS (10, 20 mg ·kg-1·d-1, i.g.) for 8 weeks. We demonstrated that TUS alleviated inflammatory response and reduced atherosclerotic plaque areas in HFD-fed ApoE-/- mice. Pro-inflammatory factor and adhesion factors were inhibited by TUS treatment. In vitro, TUS suppressed foam cell formation and oxLDL-induced inflammatory response in MPMs. RNA-sequencing analysis indicated that MAPK pathway was related to the anti-inflammation and anti-atherosclerosis effects of TUS. We further confirmed that TUS inhibited MAPKs phosphorylation in plaque lesion of aortas and cultured macrophages. MAPK inhibition blocked oxLDL-induced inflammatory response and prevented the innately pharmacological effects of TUS. Our findings present a mechanistic explanation for the pharmacological effect of TUS against atherosclerosis and indicate TUS as a potentially therapeutic candidate for atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Macrófagos , Placa Aterosclerótica/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Apolipoproteínas E/metabolismo , Ratones Endogámicos C57BL
17.
Acta Pharm Sin B ; 13(2): 678-693, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873170

RESUMEN

The NLRP3 inflammasome's core and most specific protein, NLRP3, has a variety of functions in inflammation-driven diseases. Costunolide (COS) is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity, but the principal mechanism and molecular target of COS remain unclear. Here, we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3, altering the ATPase activity and assembly of NLRP3 inflammasome. We declare COS's great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation. We also reveal that the α-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation. Taken together, NLRP3 is identified as a direct target of COS for its anti-inflammasome activity. COS, especially the α-methylene-γ-butyrolactone motif in COS structure, might be used to design and produce novel NLRP3 inhibitors as a lead compound.

18.
Cell Death Differ ; 30(6): 1457-1471, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932155

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which has been shown to increase the incidence of colorectal cancer. Recent studies have highlighted the role of ubiquitination, a post-translational modification, in the occurrence and development of colonic inflammation. Ovarian tumor deubiquitinase 6 A (OTUD6A) is a deubiquitinating enzyme, which regulates cell proliferation and tumorigenesis. In this study, we investigated the expression and role of OTUD6A in IBD. Wide-type or Otud6a-/- mice were used to develop dextran sodium sulfate (DSS)- or 2,6,4-trinitrobenzene sulfonic acid (TNBS)-induced colitis model, as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer model. Bone marrow-derived macrophages (BMDMs) were isolated from wild-type and Otud6a-/- mice to dissect molecular mechanisms. Our data show that OTUD6A deficiency attenuated DSS or TNBS-induced colitis, as well as AOM/DSS-induced colitis-related colon cancer in vivo. Bone marrow transplantation experiments further revealed that OTUD6A in myeloid cells was responsible for exacerbation of DSS-induced colitis. Mechanistically, OTUD6A directly bound to NACHT domain of NLRP3 inflammasome and selectively cleaved K48-linked polyubiquitin chains from NLRP3 at K430 and K689 to enhance the stability of NLRP3, leading to increased IL-1ß level and inflammation. Taken together, our research identifies a new function of OTUD6A in the pathogenesis of colitis by promoting NLRP3 inflammasome activation, suggesting that OTUD6A could be a potential target for the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Neoplasias Ováricas , Ratones , Animales , Femenino , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Colitis/patología , Enfermedades Inflamatorias del Intestino/patología , Macrófagos/metabolismo , Inflamación/metabolismo , Neoplasias Ováricas/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Ratones Endogámicos C57BL
19.
EMBO Mol Med ; 15(5): e17198, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36896602

RESUMEN

Atherosclerosis is a chronic inflammatory disease with high morbidity and mortality rates worldwide. Doublecortin-like kinase 1 (DCLK1), a microtubule-associated protein kinase, is involved in neurogenesis and human cancers. However, the role of DCLK1 in atherosclerosis remains undefined. In this study, we identified upregulated DCLK1 in macrophages in atherosclerotic lesions of ApoE-/- mice fed an HFD and determined that macrophage-specific DCLK1 deletion attenuates atherosclerosis by reducing inflammation in mice. Mechanistically, RNA sequencing analysis indicated that DCLK1 mediates oxLDL-induced inflammation via NF-κB signaling pathway in primary macrophages. Coimmunoprecipitation followed by LC-MS/MS analysis identified IKKß as a binding protein of DCLK1. We confirmed that DCLK1 directly interacts with IKKß and phosphorylates IKKß at S177/181, thereby facilitating subsequent NF-κB activation and inflammatory gene expression in macrophages. Finally, a pharmacological inhibitor of DCLK1 prevents atherosclerotic progression and inflammation both in vitro and in vivo. Our findings demonstrated that macrophage DCLK1 promotes inflammatory atherosclerosis by binding to IKKß and activating IKKß/NF-κB. This study reports DCLK1 as a new IKKß regulator in inflammation and a potential therapeutic target for inflammatory atherosclerosis.


Asunto(s)
Aterosclerosis , Quinasa I-kappa B , Animales , Humanos , Ratones , Aterosclerosis/genética , Cromatografía Liquida , Quinasas Similares a Doblecortina , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Espectrometría de Masas en Tándem
20.
Cell Death Differ ; 30(5): 1184-1197, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914767

RESUMEN

Doublecortin-like kinase 1 (DCLK1), a microtubule-associated protein kinase, is involved in neurogenesis, and its levels are elevated in various human cancers. Recent studies suggest that DCLK1 may relate to inflammatory responses in the mouse model of colitis. However, cellular pathways engaged by DCLK1, and potential substrates of the kinase remain undefined. To understand how DCLK1 regulates inflammatory responses, we utilized the well-established lipopolysaccharide (LPS)-stimulated macrophages and mouse model. Through a range of macrophage-based and cell-free platforms, we discovered that DCLK1 binds directly with the inhibitor of κB kinase ß (IKKß) and induces IKKß phosphorylation on Ser177/181 to initiate nuclear factor-κB (NF-κB) pathway. Deficiency in DCLK1, achieved by silencing or through pharmacological inhibition, prevented LPS-induced NF-κB activation and cytokine production in macrophages. We further show that mice with myeloid-specific DCLK1 knockout or DCLK1 inhibitor treatment are protected against LPS-induced acute lung injury and septic death. Our studies report a novel functional role of macrophage DCLK1 as a direct IKKß regulator in inflammatory signaling and suggest targeted therapy against DCLK1 for inflammatory diseases.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Lipopolisacáridos/farmacología , Quinasas Similares a Doblecortina , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA