Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
Cell Stem Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38955185

RESUMEN

Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout Nynrin diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, Nynrin overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates Ppif, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as Ppif haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in Nynrin-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.

2.
J Robot Surg ; 18(1): 288, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039276

RESUMEN

This systematic review and meta-analysis aimed to compare perioperative and oncologic outcomes in patients with pancreatic ductal adenocarcinoma (PDAC) treated with robotic-assisted surgery versus open laparotomy. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Randomized controlled trials (RCTs) and cohort studies up to June 15, 2024, were identified using PubMed, EMBASE, and Google Scholar. Additionally, reference lists of included studies, relevant review articles, and clinical guidelines were manually searched. The primary outcomes evaluated were length of stay, 90-day mortality, postoperative pancreatic fistula (POPF), and Post-pancreatectomy haemorrhage (PPH). Secondary outcomes included estimated blood loss, reoperation rate, lymph node yield, and operative time. The final analysis included 10 retrospective cohort studies involving 23,272 patients (2,179 robotic-assisted and 21,093 open surgery). There were no significant differences between the two procedures in terms of postoperative pancreatic fistula, Post-pancreatectomy haemorrhage, lymph node yield, and operative time. However, patients undergoing robotic-assisted surgery had shorter lengths of stay, lower 90-day mortality, and less estimated blood loss compared to those undergoing open surgery. The reoperation rate was higher for the robotic-assisted group. Robotic-assisted surgery for pancreatic ductal adenocarcinoma is safe and feasible. Compared to open surgery, it offers better perioperative and short-term oncologic outcomes, but with a higher risk of reoperation.


Asunto(s)
Carcinoma Ductal Pancreático , Tiempo de Internación , Pancreatectomía , Neoplasias Pancreáticas , Procedimientos Quirúrgicos Robotizados , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Humanos , Carcinoma Ductal Pancreático/cirugía , Carcinoma Ductal Pancreático/mortalidad , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/mortalidad , Pancreatectomía/métodos , Resultado del Tratamiento , Tiempo de Internación/estadística & datos numéricos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Tempo Operativo , Fístula Pancreática/etiología , Fístula Pancreática/epidemiología , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Reoperación/estadística & datos numéricos , Laparotomía/métodos
4.
Nano Lett ; 24(29): 8996-9003, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38995813

RESUMEN

Interventional therapy is widely regarded as a highly promising treatment approach for nonsurgical liver cancer. However, the development of drug resistance and tolerance to hypoxic environments after embolization can lead to increased angiogenesis, enhanced tumor cell stemness, and greater invasiveness, resulting in metastasis and recurrence. To address these challenges, a novel approach involving the use of lecithin and DSPE-PEG comodified Ca2+ loaded (NH4)2S2O8 (LDCNSO) drug in combination with transcatheter arterial embolization (TAE) has been proposed. The sono-blasting effect of LDCNSO under ultrasound triggers a cascading amplification of oxidative stress, by releasing sulfate radical (·SO4-), hydroxyl radical (·OH), and superoxide (·O2-), inducing Ca2+ overload, and reducing glutathione (GSH) levels, which eventually leads to apoptosis. LDCNSO alongside TAE has demonstrated remarkable therapeutic efficacy in the rabbit orthotopic cancer model, resulting in significant inhibition of tumor growth. This research provides valuable insights for the effective treatment of orthotopic tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Conejos , Apoptosis/efectos de los fármacos , Embolización Terapéutica/métodos , Línea Celular Tumoral , Glutatión/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico
5.
Water Res ; 262: 122143, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39067275

RESUMEN

The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 µg·L-1 and 3.77 mg·kg-1 from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑16PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10-4 in 2015 to 1.27 × 10-4 in 2019, and rebounded to 1.40 × 10-4 in 2020-2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.

6.
BMC Cancer ; 24(1): 714, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858644

RESUMEN

BACKGROUND: Our study aims to explore the relationship, shared gene signature, and the underlying mechanisms that connect rheumatoid arthritis (RA) to colorectal cancer (CRC). METHODS: Mendelian randomization (MR) analysis was conducted to assess the causality between RA and CRC. Summary statistic data-based Mendelian randomization (SMR) leveraging eQTL data was employed to identify the CRC-related causal genes. Integrated analyses of single-cell RNA sequencing and bulk RNA sequencing were employed to comprehensively investigate the shared gene signature and potential mechanisms underlying the pathogenesis of both RA and CRC. Predictive analysis of the shared hub gene in CRC immunotherapy response was performed. Pan-cancer analyses were conducted to explore the potential role of MYO9A in 33 types of human tumors. RESULTS: MR analysis suggested that RA might be associated with a slight increased risk of CRC (Odds Ratio = 1.04, 95% Confidence Interval = 1.01-1.07, P = 0.005). SMR analysis combining transcriptome analyses identified MYO9A as a causal gene in CRC and a shared gene signature in both RA and CRC. MYO9A may contribute to tumor suppression, while downregulation of MYO9A may impact CRC tumorigenesis by disrupting epithelial polarity and architecture, resulting in a worse prognosis in CRC. Additionally, MYO9A shows promise as a powerful predictive biomarker for cancer prognosis and immunotherapy response in CRC. Pan-cancer analyses demonstrated MYO9A may have a protective role in the occurrence and progression of various human cancers. CONCLUSION: RA might be associated with a slight increased risk of CRC. MYO9A is a shared gene signature and a potential immune-related therapeutic target for both CRC and RA. Targeting the MYO9A-mediated loss of polarity and epithelial architecture could be a novel therapeutic approach for CRC.


Asunto(s)
Artritis Reumatoide , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Análisis de la Aleatorización Mendeliana , Miosinas/genética , Perfilación de la Expresión Génica , Transcriptoma , Sitios de Carácter Cuantitativo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Multiómica
7.
Int J Anal Chem ; 2024: 8871600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827786

RESUMEN

Euonymusfortunei polysaccharides (EFPs) have not been extensively investigated yet in terms of their extraction and biological activity. The orthogonal experimental design was employed in this study to evaluate the optimum yield of EFPs. A maximum yield of 2.63 ± 0.23% was attained using material-liquid ratios of 60 mL/g, extraction temperature of 80°C, ultrasonic power of 144 W, and extraction time of 75 mins. The polysaccharide content reached 53.47 ± 0.31% when deproteinized thrice. An analysis of monosaccharide composition revealed that these polysaccharides consist of Gal, Glc, Man, Fuc, and Rha with a molar ratio of 7.14 ∶ 23.99 ∶ 6.29 ∶ 6.55 ∶ 1.00, respectively, in EFPs. Subsequently, the in vitro scavenging capacities of 2,2-diphenylpicrylhydrazyl (DPPH) and ·OH and superoxide anion radicals, along with the reducing power of EFPs, were studied. Results revealed that EFPs have higher antioxidant activity, particularly ·OH scavenging, as well as reducing power, as compared to Astragalus polysaccharides (ASPs) and Lycium barbarum polysaccharides (LBPs). The Cell Counting Kit-8 (CCK-8) method was used to evaluate the effects of different concentrations of polysaccharides on SKOV3 cell proliferation, and the results revealed their inhibition at concentrations in the range of 200-800 µg/mL. In addition, findings from flow cytometry further confirmed that EFPs blocked the cell cycle at G0/G1 and S phases and induced SKOV3 cell apoptosis. In a word, EFPs could be exploited and used further based on the experimental results from this study.

8.
Ultrason Sonochem ; 108: 106937, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896895

RESUMEN

This study explores the reduction of carbamates (CAs) and pyrethroids (PYs) - commonly used pesticides - in lettuce using various immersion solutions and ultrasonic processing. It also examines the role of machine learning and molecular docking in understanding the mechanisms of pesticide reduction. The results revealed that the highest reduction of both CAs and PYs exceeded 80 % on lettuce leaves. In most samples, the reduction increased with the power of ultrasonic processing and processing time. The results of machine learning models (XGBoost and SHAP) showed that during the immersion cleaning of CAs and PYs, as well as during both immersion cleaning and ultrasonic processing of CAs + PYs, the reduction was most influenced by the initial pesticide levels and immersion time. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of lettuce's wax layer identified 24 compounds, including fatty alcohols, fatty acids, fatty acid esters, and triterpenoids. Despite the absence of active sites, the lipophilic nature of long-chain aliphatic compounds aids in pesticide binding, while triterpenoids form strong hydrogen bonds with pesticides, indicating a robust adsorption on the lettuce surface. This study aims to offer insights into the efficient removal of chemical pesticide residues from fruits and vegetables, addressing critical concerns for food safety and human health.


Asunto(s)
Lactuca , Lactuca/química , Simulación del Acoplamiento Molecular , Plaguicidas/química , Soluciones , Sonicación , Ondas Ultrasónicas , Aprendizaje Automático , Carbamatos/química , Piretrinas/química , Piretrinas/aislamiento & purificación , Contaminación de Alimentos/análisis
9.
Front Cell Dev Biol ; 12: 1371323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915444

RESUMEN

Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.

10.
Curr Med Sci ; 44(3): 519-528, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842774

RESUMEN

OBJECTIVE: Intestinal fibrosis is a refractory complication of inflammatory bowel disease (IBD). Tumor necrosis factor ligand-related molecule-1A (TL1A) is important for IBD-related intestinal fibrosis in a dextran sodium sulfate (DSS)-induced experimental colitis model. This study aimed to explore the effects of TL1A on human colonic fibroblasts. METHODS: A trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model of LCK-CD2-TL1A-GFP transgenic (Tg) or wild-type (WT) mice was established to determine the effect and mechanism of TL1A on intestinal fibrosis. The human colonic fibroblast CCD-18Co cell line was treated concurrently with TL1A and human peripheral blood mononuclear cell (PBMC) supernatant. The proliferation and activation of CCD-18Co cells were detected by BrdU assays, flow cytometry, immunocytochemistry and Western blotting. Collagen metabolism was tested by Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The level of collagen metabolism in the TNBS+ethyl alcohol (EtOH)/Tg group was greater than that in the TNBS+EtOH/WT group. Transforming growth factor-ß1 (TGF-ß1) and p-Smad3 in the TNBS+EtOH/Tg group were upregulated as compared with those in the TNBS+EtOH/WT group. The proliferation of CCD-18Co cells was promoted by the addition of human PBMC supernatant supplemented with 20 ng/mL TL1A, and the addition of human PBMC supernatant and TL1A increased CCD-18Co proliferation by 24.4% at 24 h. TL1A promoted cell activation and increased the levels of COL1A2, COL3A1, and TIMP-1 in CCD-18Co cells. Treatment of CCD-18Co cells with TL1A increased the expression of TGF-ß1 and p-Smad3. CONCLUSION: TL1A promotes TGF-ß1-mediated intestinal fibroblast activation, proliferation, and collagen deposition and is likely related to an increase in the TGF-ß1/Smad3 signaling pathway.


Asunto(s)
Proliferación Celular , Fibroblastos , Fibrosis , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Ratones , Colon/metabolismo , Colon/patología , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/genética , Línea Celular , Ratones Transgénicos , Ácido Trinitrobencenosulfónico , Modelos Animales de Enfermedad , Leucocitos Mononucleares/metabolismo
11.
Quant Imaging Med Surg ; 14(5): 3731-3743, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720861

RESUMEN

Background: Post-hepatectomy liver failure (PHLF) is still a predominant cause of hepatectomy-related mortality. However, it is difficult to evaluate the remnant liver functional reserve accurately before surgery to prevent PHLF. In this study, we aimed to explore the role of gadoxetate disodium-enhanced magnetic resonance imaging (MRI) in evaluating remnant liver functional reserve. Methods: For this cross-sectional study, the sample retrospectively included 56 patients undergoing liver resections of at least three segments between June 2019 and September 2022 at The General Hospital of the Western Theater Command. Pre-surgery assessments involved liver computer tomography (CT), an indocyanine green (ICG) clearance test, the Child-Pugh scoring system, and liver function serum biochemical indicators. Each patient underwent a gadoxetate disodium-enhanced MRI before the hepatectomy, and we measured the remnant hepatocellular uptake index (rHUI) as well as the standard remnant hepatocellular uptake index (SrHUI). We examined the diagnostic utility of rHUI, SrHUI, indocyanine green retention rate of 15 minutes (ICG R15), and Albumin for PHLF. Receiver operating characteristics (ROC) analyses were used to measure the preoperative liver function parameters (namely, rHUI, SrHUI, ICG R15, and Albumin) for predicting PHLF. The areas under the curve (AUCs) were calculated and compared between different preoperative liver function parameters using the Wilson/Brown method. The Pearson or Spearman correlation coefficient was used for correlation analysis between ICG R15, Albumin, and rHUI and between ICG R15, Albumin, and SrHUI, respectively. Results: Twelve patients (21.43%) had complications of PHLF. We found significant differences in rHUI, SrHUI, ICG R15, and Albumin between the non-PHLF and PHLF groups. The pooled r between ICG R15 and rHUI was -0.591 [95% confidence interval (CI): -0.740 to -0.389, P<0.001], and between ICG R15 and SrHUI was -0.534 (95% CI: -0.703 to -0.308, P<0.001). The area under the curve (AUC) values of rHUI, SrHUI, ICG R15, and Ablumin were 0.871 (sensitivity 81.82%; specificity 91.67%), 0.878 (sensitivity 79.55%; specificity 83.33%), 0.835 (sensitivity 99.73%; specificity 66.67%), and 0.782 (sensitivity 88.64%; specificity 58.33%), respectively. Conclusions: We found that the rHUI and SrHUI calculated using the gadoxetate disodium-enhanced MRI reflected a combination of remnant hepatocyte function and liver volume, and these were useful as a quantitative assessment indicator of remnant liver functional reserve and can be a better predictor of PHLF after major hepatic resection.

12.
Int J Gen Med ; 17: 2407-2415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813240

RESUMEN

Background: The role of aldehyde dehydrogenase 2 (ALDH2) in cardiovascular diseases has been gradually studied. However, it is unclear whether ALDH2 polymorphism is associated with the risk of early onset (onset age ≤55 years old in men and ≤65 years old in women) coronary artery stenosis (CAS). The association between ALDH2 single nucleotide polymorphism (SNP) rs671 and risk in patients with early onset CAS was investigated in this study. Methods: The study included 213 early onset CAS patients and 352 individuals without CAS were set as controls. The ALDH2 rs671 polymorphism was genotyped by polymerase chain reaction (PCR) - microarray. Differences in ALDH2 rs671 genotypes and alleles between patients and controls were compared. Multiple logistic regression analysis was performed after adjusting for gender, body mass index (BMI), smoking history, drinking history, and diabetes mellitus to assess the relationship between ALDH2 rs671 genotypes and early onset CAS risk. Results: The frequency of the ALDH2 rs671 G/G genotype was lower in the early onset CAS patients (43.7% vs 55.3%, p=0.007) than that in the controls. The frequency of the ALDH2 rs671 A allele was higher (32.9% vs 25.0%) than that in the controls (p=0.005). After adjusting for other confounding factors, multivariate logistic regression showed that ALDH2 rs671 A/A genotype (A/A vs G/G: odds ratio (OR) 2.508, 95% confidence interval (CI): 1.130-5.569, p=0.024), overweight (BMI≥24.0 vs 18.5-23.9: OR 5.047, 95% CI: 3.275-7.777, p<0.001), history of smoking (yes vs no: OR 2.813, 95% CI: 1.595-4.961, p<0.001), and diabetes mellitus (yes vs no: OR 2.191, 95% CI: 1.397-3.437, p=0.001) were the independent risk factors of early onset CAS. Conclusion: In men ≤55 years old and women ≤65 years old, individuals with ALDH2 rs671 A/A genotype, overweight (BMI ≥24.0 kg/m2), smoking history, and diabetes mellitus increased risk of developing CAS.

13.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759288

RESUMEN

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Sistema Glinfático , Hipocampo , Ketamina , Animales , Ketamina/farmacología , Ketamina/toxicidad , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Ratones , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acuaporina 4/metabolismo , Acuaporina 4/genética , Receptor de Serotonina 5-HT2C/metabolismo , Receptor de Serotonina 5-HT2C/genética , Ratones Endogámicos C57BL , Células Cultivadas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética
14.
Clin Res Hepatol Gastroenterol ; 48(7): 102351, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705234

RESUMEN

OBJECTIVES: To investigate the optimal timing for initiating antiviral therapy in hepatitis B virus (HBV) carriers with low-level viremia (LLV). METHODS: We retrospectively enrolled 126 HBV carriers with LLV who underwent liver biopsy. Patients' clinical data, routine blood test results, portal vein diameter, splenic vein diameter and thickness, and measurements (LSM) within 1 week before liver biopsy were obtained. Single-factor and multifactor statistical methods were used to analyze factors that affected inflammation and fibrosis in pathological liver tissues. The receiver operating characteristic curve was used to analyze liver stiffness and HBV DNA levels to determine liver tissue inflammation and fibrosis. R -Studio software was used to draw nomograms, calibration plots, and model decision curves. RESULTS: Infection duration and HBV DNA levels affected liver tissue inflammation. Albumin(ALB), aspartate aminotransferase (AST), HBV DNA, liver stiffness, age, and splenic thickness affected liver fibrosis. The best cutoff value of the LSM for diagnosing liver inflammation and fibrosis was 7.45 (specificity, 92%). The best cutoff value of HBV DNA for diagnosing liver inflammation and fibrosis was 39.5 (specificity, 96%). HBV DNA,and splenic thickness affected the treatment decision in naive chronic hepatitis Bpatients with LLV CONCLUSIONS: HBV carriers with LLV have high incidences of liver tissue inflammation and fibrosis. The infection duration and HBV DNA levels affected liver inflammation whereas the ALB, AST levels, HBV DNA, LSM, age, and splenic thickness affected liver fibrosis. Eligible expansion of antiviral treatment indications is necessary, however, a universal treatment approach may be inefficient. HBV DNA can be a reference for initiating antiviral therapy.

15.
Mater Today Bio ; 26: 101085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765248

RESUMEN

Breast cancer is the most diagnosed malignancy in women globally, and drug resistance is among the major obstacles to effective breast cancer treatment. Emerging evidence indicates that photothermal therapy and ferroptosis are both promising therapeutic techniques for the treatment of drug-resistant breast tumors. In this study, we proposed a thermal/ferroptosis/magnetic resonance imaging (MRI) triple functional nanoparticle (I@P-ss-FRT) in which ferritin, an iron storage material with excellent cellular uptake capacity, was attached via disulfide bonds onto polydopamine coated iron oxide nanoparticle (I@P) as photothermal transduction agent and MRI probe. I@P-ss-FRT converted the near-infrared light (NIR) into localized heat which accelerated the release of ferrous ions from ferritin accomplished by glutathione reduction and subsequently induced ferroptosis. The drug-resistant cancer cell lines exhibited a more significant uptake of I@P-ss-FRT and sensitivity to PTT/ferroptosis compared with normal cancer cell lines. In vivo, I@P-ss-FRT plus NIR displayed the best tumor-killing potential with inhibitory rate of 83.46 %, along with a decline in GSH/GPX-4 content and an increase in lipid peroxides generation at tumor sites. Therefore, I@P-ss-FRT can be applied to combat drug-resistant breast cancer.

16.
J Neurosurg ; : 1-10, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579358

RESUMEN

OBJECTIVE: CT and MRI are synergistic in the information provided for neurosurgical planning. While obtaining both types of images lends unique data from each, doing so adds to cost and exposes patients to additional ionizing radiation after MRI has been performed. Cross-modal synthesis of high-resolution CT images from MRI sequences offers an appealing solution. The authors therefore sought to develop a deep learning conditional generative adversarial network (cGAN) which performs this synthesis. METHODS: Preoperative paired CT and contrast-enhanced MR images were collected for patients with meningioma, pituitary tumor, vestibular schwannoma, and cerebrovascular disease. CT and MR images were denoised, field corrected, and coregistered. MR images were fed to a cGAN that exported a "synthetic" CT scan. The accuracy of synthetic CT images was assessed objectively using the quantitative similarity metrics as well as by clinical features such as sella and internal auditory canal (IAC) dimensions and mastoid/clinoid/sphenoid aeration. RESULTS: A total of 92,981 paired CT/MR images obtained in 80 patients were used for training/testing, and 10,068 paired images from 10 patients were used for external validation. Synthetic CT images reconstructed the bony skull base and convexity with relatively high accuracy. Measurements of the sella and IAC showed a median relative error between synthetic CT scans and ground truth images of 6%, with greater variability in IAC reconstruction compared with the sella. Aerations in the mastoid, clinoid, and sphenoid regions were generally captured, although there was heterogeneity in finer air cell septations. Performance varied based on pathology studied, with the highest limitation observed in evaluating meningiomas with intratumoral calcifications or calvarial invasion. CONCLUSIONS: The generation of high-resolution CT scans from MR images through cGAN offers promise for a wide range of applications in cranial and spinal neurosurgery, especially as an adjunct for preoperative evaluation. Optimizing cGAN performance on specific anatomical regions may increase its clinical viability.

17.
BMC Med ; 22(1): 153, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609953

RESUMEN

BACKGROUND: Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. METHODS: From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. RESULTS: In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. CONCLUSIONS: The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. TRIAL REGISTRATION: We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Tiroides , Humanos , Metástasis Linfática/diagnóstico por imagen , Estudios Prospectivos , Estudios Retrospectivos , Cáncer Papilar Tiroideo/diagnóstico por imagen , Neoplasias de la Tiroides/diagnóstico por imagen
18.
Heliyon ; 10(7): e28997, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601619

RESUMEN

Background: IgA nephropathy (IgAN) stands as the most prevalent form of glomerulonephritis and ranks among the leading causes of end-stage renal disease worldwide. Regrettably, we continue to grapple with the absence of dependable diagnostic markers and specific therapeutic agents for IgAN. Therefore, this study endeavors to explore novel biomarkers and potential therapeutic targets in IgAN, while also considering their relevance in the context of tumors. Methods: We gathered IgAN datasets from the Gene Expression Omnibus (GEO) database. Subsequently, leveraging these datasets, we conducted an array of analyses, encompassing differential gene expression, weighted gene co-expression network analysis (WGCNA), machine learning, receiver operator characteristic (ROC) curve analysis, gene expression validation, clinical correlations, and immune infiltration. Finally, we carried out pan-cancer analysis based on hub gene. Results: We obtained 1391 differentially expressed genes (DEGs) in GSE93798 and 783 DGEs in GSE14795, respectively. identifying 69 common genes for further investigation. Subsequently, GMFG was identified the hub gene based on machine learning. In the verification set and the training set, the GMFG was higher in the IgAN group than in the healthy group and all of the GMFG area under the curve (AUC) was more 0.8. In addition, GMFG has a close relationship with the prognosis of malignancies and a range of immune cells. Conclusions: Our study suggests that GMFG could serve as a promising novel biomarker and potential therapeutic target for both IgAN and certain types of tumors.

19.
CNS Neurosci Ther ; 30(3): e14676, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488446

RESUMEN

AIM: To explore the neuroprotective effects of ARA290 and the role of ß-common receptor (ßCR) in a mouse model of middle cerebral artery occlusion (MCAO). METHODS: This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and ßCR were measured by western blot. RESULTS: ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against ßCR. CONCLUSION: ARA290 provided a neuroprotective effect via ßCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.


Asunto(s)
Isquemia Encefálica , Eritropoyetina , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Oligopéptidos , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Masculino , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Eritropoyetina/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Péptidos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Citocinas , Encéfalo , Isquemia Encefálica/tratamiento farmacológico
20.
Quant Imaging Med Surg ; 14(3): 2640-2654, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38545040

RESUMEN

Background: Efficiently and accurately detecting cerebral microbleeds (CMBs) is crucial for diagnosing dementia, stroke, and traumatic brain injury. Manual CMB detection, however, is time-consuming and error-prone. This study evaluates a novel artificial intelligence (AI) software designed for the automated detection of CMBs using susceptibility weighted imaging (SWI). Methods: The SWI data from 265 patients, 206 of whom had a history of stroke and others of whom presented a variety of other medical histories, including hypertension, diabetes, hyperlipidemia, cerebral hemorrhage, intracerebral vascular malformations, tumors, and inflammation, collected between January 2015 and December 2018, were analyzed. Two independent radiologists initially reviewed the images to identify and count the number of CMBs. Subsequently, the images were processed using an automatic CMB detection software. The generated reports were then reviewed by the radiologists. A final consensus between the two radiologists, obtained after a second review of the images, was used to compare results obtained from the initial manual detection and those of the automatic CMB detection software. The differences of detection sensitivity and precision for patients with or without CMBs and for individual CMBs between the radiologist and the automatic CMB detection software were compared using Pearson chi-squared tests. Results: A total of 1,738 CMBs were detected among 148 patients (71.4±10.7 years, 100 males) from the analyzed SWI data. While the radiologists identified 139 cases with CMBs, the automatic CMB detection software detected 145 cases. Nevertheless, there was no statistical difference in the sensitivity and specificity of the automatic CMB detection software compared to manual detection in determining patients with CMBs (P=0.656 and P=0.212, chi-square test). However, the radiologist identified 93 patients without CMBs, while the automatic CMB detection software detected 121 patients without CMBs, exhibiting a statistically significant difference (P=0.016, chi-square test). In terms of individual CMBs, the radiologists found 1,284, whereas the automatic CMB detection software detected 1,677 CMBs. The detection sensitivity for human versus the automatic CMB detection software were 75.5% and 96.5% respectively (P<0.001, chi-square test), while the precision rates were 92.2% and 86.0% (P<0.001, chi-square test), respectively. Notably, the radiologists were more likely to overlook CMBs when the number of CMBs was high (above 30). Conclusions: The automatic CMB detection software proved to be an effective tool for the detection and quantification of CMBs. It demonstrated higher sensitivity than the radiologists, especially in detecting minuscule CMBs and in cases with high CMB prevalence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA