Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Animals (Basel) ; 14(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39199939

RESUMEN

The study was designed to investigate the protective effect of dietary supplementation with coated benzoic acid (CBA) on intestinal barrier function in weaned pigs challenged with enterotoxigenic Escherichia coli (ETEC). Thirty-two pigs were randomized to four treatments and given either a basal diet or a basal diet supplemented with 3.0 g/kg CBA, followed by oral administration of ETEC or culture medium. The results showed that CBA supplementation increased the average daily weight gain (ADWG) in the ETEC-challenged pigs (p < 0.05). CBA also increased the serum activity of total superoxide dismutase (T-SOD) and the total antioxidant capacity (T-AOC), as it decreased the serum concentrations of endotoxin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the ETEC-challenged pigs (p < 0.05). Interestingly, the CBA alleviated the ETEC-induced intestinal epithelial injury, as indicated by a reversal of the decrease in D-xylose absorption and a decrease in the serum levels of D-lactate and diamine oxidase (DAO) activity, as well as a decrease in the quantity of apoptotic cells in the jejunal epithelium following ETEC challenge (p < 0.05). Moreover, CBA supplementation significantly elevated the mucosal antioxidant capacity and increased the abundance of tight junction protein ZO-1 and the quantity of sIgA-positive cells in the jejunal epithelium (p < 0.05). Notably, CBA increased the expression levels of porcine beta defensin 2 (PBD2), PBD3, and nuclear factor erythroid-2 related factor 2 (Nrf-2), while downregulating the expression of toll-like receptor 4 (TLR4) in the jejunal mucosa (p < 0.05). Moreover, CBA decreased the expression levels of interleukin-1ß (IL-1ß), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) in the ileal mucosa upon ETEC challenge (p < 0.05). These results suggest that CBA may attenuate ETEC-induced damage to the intestinal epithelium, resulting in reduced inflammation, enhanced intestinal immunity and antioxidant capacity, and improved intestinal epithelial function.

2.
J Anim Sci Biotechnol ; 15(1): 111, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39127747

RESUMEN

BACKGROUND: Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs. RESULTS: We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity. CONCLUSIONS: These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.

3.
J Agric Food Chem ; 72(36): 20091-20100, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189965

RESUMEN

As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.


Asunto(s)
Alimentación Animal , Coffea , Café , Polifenoles , Ácido Quínico , Animales , Ácido Quínico/análogos & derivados , Ácido Quínico/análisis , Polifenoles/administración & dosificación , Polifenoles/química , Porcinos/metabolismo , Alimentación Animal/análisis , Coffea/química , Café/química , Suplementos Dietéticos/análisis , Masculino , Femenino , Peso Corporal/efectos de los fármacos
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001695

RESUMEN

To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n = 6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), d-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.


In last decades, antibiotics have been widely used as growth-promoting agents to relieve weaning stress and prevent intestinal injury. However, overdose and misuse of antibiotics led to bacterial resistance and drug residues in animal products. Therefore, the development of healthy alternatives for pork production has attracted considerable research interest worldwide. Cordyceps militaris (CM) is an entomopathogenic fungus with various biological effects, including anti-inflammatory, lipid-lowering, and antioxidant activities. This study was conducted to investigate the effects of dietary CM supplementation on growth performance, antioxidant capacity, and intestinal epithelium functions in weaned pigs. Our results showed that CM supplementation could enhance the growth performance by improving antioxidant capacity and intestinal epithelium functions.


Asunto(s)
Alimentación Animal , Antioxidantes , Cordyceps , Dieta , Mucosa Intestinal , Animales , Cordyceps/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Antioxidantes/metabolismo , Porcinos/crecimiento & desarrollo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Destete , Fenómenos Fisiológicos Nutricionales de los Animales , Distribución Aleatoria , Masculino
5.
Anim Nutr ; 17: 110-122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766519

RESUMEN

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

6.
Elife ; 122024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442142

RESUMEN

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Asunto(s)
Síndrome de Liberación de Citoquinas , Interleucina-4 , Animales , Ratones , Receptores X del Hígado , Leucina/farmacología , Lipopolisacáridos , Citocinas , Transducción de Señal , Macrófagos , Diana Mecanicista del Complejo 1 de la Rapamicina
7.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38331814

RESUMEN

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

8.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38198728

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Aceites Volátiles , Enfermedades de los Porcinos , Porcinos , Masculino , Animales , Saccharomyces cerevisiae , Factor de Necrosis Tumoral alfa , Aceites Volátiles/farmacología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Diarrea/microbiología , Diarrea/veterinaria , Dieta/veterinaria , Inflamación/veterinaria , Superóxido Dismutasa , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/microbiología , Alimentación Animal/análisis , Destete
9.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290533

RESUMEN

An experiment was conducted to determine the effects of betaine on growth performance and intestinal health in rabbits fed diets with different levels of digestible energy. During a 36-d experiment, a total of 144 healthy 35-d-old weaned New Zealand white rabbits with a similar initial body weight (771.05 ±â€…41.79 g) were randomly distributed to a 2 × 3 factorial arrangement. Experimental treatments consisted of two levels of digestible energy (normal: 10.20 and low: 9.60 MJ/kg) and three levels of betaine (0, 500, and 1,000 mg/kg). Results indicated that rabbits fed the diet with low digestible energy (LDE) had reduced body gain/feed intake on days 1 to 14 and 1 to 36 (P < 0.05), increased the apparent total tract digestibility (ATTD) of neutral detergent fiber, acid detergent fiber (ADF), and n-free extract, and decreased the ATTD of gross energy (GE), crude fiber, and organic matter (OM; P < 0.05). The LDE diet upregulated the gene abundance levels of duodenum junctional adhesion molecule-3 (JAM-3) and downregulated the ileum toll-like receptor 4, myeloid differentiation factor 88, and interleukin-6 (IL-6; P < 0.05). Activities of amylase, lipase, trypsin, and the immunoglobulin M content in the jejunum were decreased in the LDE treatment group (P < 0.05). Dietary betaine supplementation increased the ATTD of GE, dry matter (DM), ADF, and n-free extract by LDE (P < 0.05). The villus height, crypt depth, and goblet cell numbers were decreased, and the villus-crypt ratio was increased in the duodenum (P < 0.05). The gene abundance levels of duodenum IL-2 were downregulated, and the duodenum JAM-2 and JAM-3 were upregulated (P < 0.05). Furthermore, the addition of betaine to the LDE diet increased the ATTD of GE, DM, and OM in rabbits (P < 0.05). Gene abundance levels of ileum IL-6 and duodenum JAM-3 were upregulated (P < 0.05). In summary, LDE diets can reduce the activity of intestinal digestive enzymes and decrease the ATTD of nutrients. However, the addition of betaine to LDE diets improved the intestinal barrier structure and nutrient ATTD in rabbits, with better results when betaine was added at an additive level of 500 mg/kg.


Insufficient dietary energy can cause many negative effects on animal production and cause intestinal diseases, which are one of the main causes of morbidity and mortality in rabbits. Results of some experiments demonstrated that betaine has various physiological functions such as improving energy utilization and intestinal health. Therefore, the aim of this study was to evaluate the effects of betaine supplementation on growth performance, intestinal function, and health in rabbits fed diets with different levels of digestible energy. The results showed that the addition of betaine to a low-digestible energy diet improved the gut barrier structure and nutrient digestibility in rabbits.


Asunto(s)
Betaína , Detergentes , Conejos , Animales , Betaína/farmacología , Detergentes/farmacología , Interleucina-6 , Digestión , Dieta/veterinaria
10.
Mol Nutr Food Res ; 68(4): e2200719, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193241

RESUMEN

SCOPE: Endurance capacity is essential for endurance athletes' achievement and individuals' health. Nutritional supplements are a proven way to enhance endurance capacity. Previous studies have shown that ferulic acid (FA) enhances endurance capacity, but the underlying mechanism is unclear. The study is aimed to investigate the mechanism by which FA increases endurance capacity. METHODS AND RESULTS: Forty mice are divided into control and 0.5% FA-supplemented groups, and an exhaustive swimming test demonstrates increased endurance capacity with FA supplementation. This study investigates the underlying mechanism for this effect of FA. Firstly, RT-PCR and western blot analysis find that FA increases the transformation from fast to slow muscle fiber. Additionally, adenosine triphosphate concentration, metabolic enzyme activity, and mitochondrial DNA analysis find that FA increases mitochondrial biogenesis and activates nuclear factor erythroid 2-related factor (NRF)1 signaling pathway in muscle. Besides, through antioxidant capacity analysis, this study finds that FA activates NRF2 signaling pathway and improves the antioxidant capacity in muscle. Moreover, inhibiting NRF2 eliminates FA's effect on muscle fiber transformation in C2C12 cells. CONCLUSION: Our results suggest that FA increases endurance capacity by promoting skeletal muscle oxidative phenotype, mitochondrial function, and antioxidant capacity, which may be related to the NRF1 and NRF2 signaling pathways.


Asunto(s)
Antioxidantes , Ácidos Cumáricos , Factor 2 Relacionado con NF-E2 , Humanos , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias , Fenotipo , Estrés Oxidativo
11.
Sci Total Environ ; 905: 167043, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717771

RESUMEN

BACKGROUND: Iron plays a pivotal role in various physiological processes, including intestinal inflammation, ferroptosis, and the modulation of the gut microbiome. However, the way these factors interact with each other is unclear. METHODS: Mice models were fed with low, normal and high iron diets to assess their impacts on colitis, ferroptosis and gut microbiota. Untargeted fecal metabolomics analysis, 16S rRNA sequencing, histopathology analysis, real-time quantitative PCR and western blot were performed to analyze the differences in the intestinal inflammatory response and understanding its regulatory mechanisms between low, normal and high iron groups. RESULTS: The iron overload changed the serum iron, colon iron and fecal iron. In addition, the iron overload induced the colitis, induced the ferroptosis and altered the microbiome composition in the fecal of mice. By using untargeted fecal metabolomics analysis to screen of metabolites in the fecal, we found that different metabolomics profiles in the fecal samples between iron deficiency, normal iron and iron overload groups. The correlation analysis showed that both of iron deficiency and overload were closely related to Dubosiella. The relationship between microbial communities (e.g., Akkermansia, Alistipes, and Dubosiella) and colitis-related parameters was highly significant. Additionally, Alistipes and Bacteroides microbial communities displayed a close association with ferroptosis-related parameters. Iron overload reduced the concentration of metabolites, which exert the anti-inflammatory effects (e.g., (+)-.alpha.-tocopherol) in mice. The nucleotide metabolism, enzyme metabolism and metabolic diseases were decreased and the lipid metabolism was increased in iron deficiency and iron overload groups compared with normal iron group. CONCLUSION: Iron overload exacerbated colitis in mice by modulating ferroptosis and perturbing the gut microbiota. Iron overload-induced ferroptosis was associated with NRF2/GPX-4 signaling pathway. Specific microbial taxa and their associated metabolites were closely intertwined with both colitis and ferroptosis markers.


Asunto(s)
Colitis , Ferroptosis , Microbioma Gastrointestinal , Deficiencias de Hierro , Sobrecarga de Hierro , Animales , Ratones , ARN Ribosómico 16S , Colitis/inducido químicamente , Hierro , Bacteroidetes , Firmicutes , Ratones Endogámicos C57BL
12.
Anim Biotechnol ; 34(8): 4021-4031, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37647084

RESUMEN

Grape seed proanthocyanidin extract (GSPE) plays a significant role in body health, including improving antioxidant capacity and maintaining lipid metabolism stability. However, whether dietary GSPE supplementation can improve lipid metabolism in finishing pigs remains unclear. Here 18 castrated male Duroc × Landrace × Yorkshire finishing pigs were randomly divided into three groups with six replicates and one pig per replicate. Pigs were fed a basal diet (control), a basal diet supplemented with 100 mg/kg GSPE, or a basal diet supplemented with 200 mg/kg GSPE for 30 days. Antioxidant analysis showed that dietary 200 mg/kg GSPE supplementation increased glutathione, total antioxidant capacity and glutathione peroxidase levels, and reduced malondialdehyde levels in serum, muscle and liver. Dietary 200 mg/kg GSPE supplementation also upregulated the mRNA and protein levels of nuclear-related factor 2 (Nrf2). Lipid metabolism analysis showed that dietary GSPE supplementation increased serum high-density lipoprotein cholesterol levels and reduced serum triglyceride and total cholesterol levels. Besides, GPSE upregulated the mRNA expression of lipolysis- and fatty acid oxidation-related genes downregulated the mRNA expression of lipogenesis-related genes, and activated the AMPK signal in finishing pigs. Together, we provided evidence that dietary GSPE supplementation improved the antioxidant capacity and lipid metabolism in finishing pigs.


Asunto(s)
Antioxidantes , Extracto de Semillas de Uva , Metabolismo de los Lípidos , Proantocianidinas , Masculino , Animales , Porcinos , Suplementos Dietéticos , Colesterol , ARN Mensajero
13.
Foods ; 12(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628046

RESUMEN

With the prohibition of antibiotics in feed, certain phytocompounds have been widely studied as feed additives. Chlorogenic acid (CGA), a natural polyphenol found in plants, possesses anti-inflammatory, antioxidant, and metabolic regulatory features. The objective of this study was to investigate the effects of dietary chlorogenic acid supplementation on growth performance and carcass traits, as well as meat quality, nutrient value and flavor substances of Duroc × Landrace × Yorkshire (DLY) pigs. Forty healthy DLY pigs (initial body weight (BW): 26.69 ± 0.37) were allotted to four treatment groups and were fed with the control diet, which was supplemented with 25 mg kg-1, 50 mg kg-1, and 100 mg kg-1 CGA, respectively. The trial lasted 100 days. The results suggested that dietary CGA supplementation had no effect (p < 0.05) on the average daily gain (ADG) and feed conversion ratio (FC). Herein, it was found that 50 mg kg-1 CGA-containing diet not only increased the dressing percentage and perirenal fat, but also reduced the rate of muscular pH decline (p < 0.05). In the longissimus thoracis (LT) muscle, the myofiber-type-related genes such as the MyHC IIa and MyHC IIX mRNA levels were increased by 100 mg kg-1 CGA. The results also indicated that the 100 mg kg-1 CGA-containing diet increased the content of crude fat, glycogen, total amino acids, and flavor amino acids, but decreased the inosine and hypoxanthine concentration in LT (p < 0.05). Meanwhile, the lipogenic gene ACC1 mRNA level was elevated by 50 mg kg-1 CGA. Instead, 100 mg kg-1 CGA downregulated the expression level of NT5C2, an enzyme responsible for inosine-5'-monophosphate (IMP) degradation. Additionally, 100 mg kg-1 CGA decreased the malondialdehyde (MDA) content, but increased the glutathione peroxidase (GSH-Px) content as well as antioxidant gene (HO-1, NQO-1, NRF2) mRNA levels in LT muscle. These findings showed that dietary CGA could partly improve carcass traits and muscle flavor without negatively affecting growth performance, and the underlying mechanism may be due to the antioxidant properties induced by CGA.

14.
Porcine Health Manag ; 9(1): 32, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420289

RESUMEN

BACKGROUND: Small peptide chelated iron (SPCI), a novel iron supplementation in pig diets, owns growth-enhancing characteristics. Although a number of researches have been performed, there is no clear-cut evidence to show the exact relationship between the dose and effects of small peptide chelated minerals. Therefore, we investigated the effect of dietary supplementation of SPCI at different doses in the growth performance, immunity, and intestinal health in weaned pigs. METHODS: Thirty weaned pigs were randomly assigned into five groups and feed with basal diet or the basal diet containing 50, 75, 100, or 125 mg/kg Fe as SPCI diets. The experiment lasted for 21 d and on day 22, blood samples were collected 1 h later. The tissue and intestinal mucosa samples were collected following. RESULTS: Our results showed that the feed to gain ratio (F:G) decreased with different levels of SPCI addition (P < 0.05). The average daily gain (ADG) (P < 0.05) and digestibility of crude protein (P < 0.01) decreased with 125 mg/kg SPCI addition. With dietary different levels of SPCI addition, the serum concentrations of ferritin (quadratic, P < 0.001), transferrin (quadratic, P < 0.001), iron content in liver (quadratic, P < 0.05), gallbladder (quadratic, P < 0.01) and fecal (quadratic, P < 0.01) increased quadraticly. While the iron content in tibia (P < 0.01) increased by 100 mg/kg SPCI supplementation. Dietary 75 mg/kg SPCI addition increased the serum insulin-like growth factor I (IGF-I) (P < 0.01) and SPCI (75 ~ 100 mg/kg) addition also increased the serum content of IgA (P < 0.01). The serum concentrations of IgG (quadratic, P < 0.05) and IgM (quadratic, P < 0.01) increased quadraticly by different levels of SPCI supplementation. Moreover, different levels of SPCI supplementation decreased the serum concentration of D-lactic acid (P < 0.01). The serum glutathione peroxidase (GSH-Px) (P < 0.01) elevated but the malondialdehyde (MDA) (P < 0.05) decreased by 100 mg/kg SPCI addition. Interestingly, SPCI supplementation at 75 ~ 100 mg/kg improved the intestinal morphology and barrier function, as suggested by enhanced villus height (P < 0.01) and villus height/crypt depth (V/C) (P < 0.01) in duodenum, as well as jejunum epithelium tight-junction protein ZO-1 (P < 0.01). Moreover, SPCI supplementation at 75 ~ 100 mg/kg increased the activity of duodenal lactase (P < 0.01), jejunal sucrase (P < 0.01) and ileal maltase (P < 0.01). Importantly, the expression levels of divalent metal transporter-1(DMT1) decreased with different levels of SPCI addition (P < 0.01). In addition, dietary SPCI supplementation at 75 mg/kg elevated the expression levels of critical functional genes such as peptide transporter-1(PePT1) (P = 0.06) and zinc transporter 1 (ZnT1) (P < 0.01) in ileum. The expression levels of sodium/glucose co-transporter-1 (SGLT1) in ileum (quadratic, P < 0.05) increased quadraticly by different levels of SPCI addition and amino acid transporter-1 (CAT1) in jejunum(P < 0.05) also increased by 100 mg/kg SPCI addition. CONCLUSIONS: Dietary SPCI supplementation at 75 ~ 100 mg/kg improved growth performance by elevated immunity and intestinal health.

15.
Anim Biotechnol ; 34(9): 4900-4909, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37149789

RESUMEN

Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.


Asunto(s)
Antioxidantes , Ácidos Cumáricos , Enfermedades de los Porcinos , Femenino , Animales , Porcinos , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Metabolismo de los Lípidos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Hígado , Suplementos Dietéticos , ARN Mensajero/metabolismo
16.
Int J Biol Macromol ; 240: 124431, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060970

RESUMEN

Interferons are a group of glycoproteins that are expressed in various cell types in their inflammatory responses to infections. In this study, we explored the protective effects of porcine interferon-λ3 (PIFN-λ3) on intestinal inflammation and injury in mice induced by porcine rotavirus (PRV). BALB/c mice were administrated by PIFN-λ3 or phosphate buffer solution (PBS) for three days prior to PRV infection. We show that PRV infection caused acute inflammatory responses in mice, as indicated by increases in serum concentrations of inflammatory cytokines such as the interlukin-1ß (IL-1ß), interlukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) (P < 0.05). However, PIFN-λ3 administration not only decreased their concentrations but also elevated the concentrations of immunoglobulin (Ig) M and IgG in the PRV challenged mice (P < 0.05). PRV infection significantly decreased the jejunal villus height and the ratio of villus height to crypt depth (V/C); however, PIFN-λ3 treatment significantly elevated the villus height and the abundance of tight junction protein ZO-1 in the jejunum (P < 0.05). Moreover, PIFN-λ3 decreased the replication of PRV in the jejunal epithelium, but significantly increased the abundance of sIgA and the activities of maltase and sucrase in the PRV-challenged mice (P < 0.05). Interestingly, PIFN-λ3 elevated the expression levels of sodium/glucose cotransporter 1 (SGLT1) and mucin 2 (MUC2) in the PRV-challenged mice (P < 0.05). Moreover, PIFN-λ3 significantly increased the expression levels of IL-10, signal transducer and activator of transcription 1 (STAT1), and critical interferon-stimulated genes such as the 2'-5' oligoadenylate synthetase-like 1 (OASL1), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and radical S-adenosyl methionine domain containing 2 (RSAD2) in the jejunum upon PRV infection (P < 0.05). The anti-virus and anti-inflammatory effect of PIFN-λ3 should make it an attractive candidate to prevent various pathogen-induced bowel diseases.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Porcinos , Ratones , Interferones/metabolismo , Interferones/farmacología , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Infecciones por Rotavirus/complicaciones , Infecciones por Rotavirus/tratamiento farmacológico , Infecciones por Rotavirus/metabolismo
17.
J Anim Sci Biotechnol ; 14(1): 44, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932457

RESUMEN

BACKGROUND: Intestinal inflammation is the main risk factor causing intestinal barrier dysfunction and lipopolysaccharide (LPS) can trigger inflammatory responses in various eukaryotic species. Yeast hydrolysate (YH) possesses multi-biological effects and is received remarkable attention as a functional ingredient for improving growth performance and promoting health in animals. However, there is still inconclusive on the protective effects of dietary YH supplementation on intestinal barrier of piglets. This study was conducted to investigate the attenuate effects of YH supplementation on inflammatory responses and intestinal barrier injury in piglets challenged with LPS. METHODS: Twenty-four piglets (with an average body weight of 7.42 ± 0.34 kg) weaned at 21 days of age were randomly assigned to one of two dietary treatments (12 replications with one pig per pen): a basal diet or a basal diet containing YH (5 g/kg). On the 22nd d, 6 piglets in each treatment were intraperitoneally injected with LPS at 150 µg/kg BW, and the others were injected with the same amount of sterile normal saline. Four hours later, blood samples of each piglet were collected and then piglets were euthanized. RESULTS: Dietary YH supplementation increased average daily feed intake and average daily gain (P < 0.01), decreased the ratio of feed intake to gain of piglets (P = 0.048). Lipopolysaccharide (LPS) injection induced systemic inflammatory response, evidenced by the increase of serum concentrations of haptoglobin (HP), adrenocorticotropic hormone (ACTH), cortisol, and interleukin-1ß (IL-1ß). Furthermore, LPS challenge resulted in inflammatory intestinal damage, by up-regulation of the protein or mRNA abundances of tumor necrosis factor-α (TNF-α), IL-1ß, toll-like receptors 4 (TLR4) and phosphor-nuclear factor-κB-p65 (p-NFκB-p65) (P < 0.01), and down-regulation of the jejunal villus height, the protein and mRNA abundances of zonula occludens-1 (ZO-1) and occludin (OCC; P < 0.05) in jejunal mucosa. Dietary YH supplementation decreased the impaired effects of ACTH, cortisol, HP, IL-1ß and diamine oxidase in serum (P < 0.05). Moreover, YH supplementation also up-regulated the jejunal villus height, protein and mRNA abundances of ZO-1 and OCC (P < 0.05), down-regulated the mRNA expressions of TNF-α and IL-1ß and the protein abundances of TNF-α, IL-1ß, TLR4 and p-NFκB-p65 in jejunal mucosa in LPS-challenged pigs (P < 0.01). CONCLUSION: Yeast hydrolysate could attenuate inflammatory response and intestinal barrier injury in weaned piglets challenged with LPS, which was associated with the inhibition of TLR4/NF-κB signaling pathway activation.

18.
J Nat Prod ; 86(2): 276-289, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36746775

RESUMEN

Sixteen new quinoline alkaloids (1a-7, 8a, 9, 10, 13-15, 17, and 21) and 10 known analogs (8b, 11, 12, 16, 18-20, and 22-24), along with three known cyclopeptide alkaloids (25-27), were isolated from the roots of Waltheria indica. The structures of the new compounds were elucidated by detailed NMR and circular dichroism with computational support and mass spectrometry data interpretation. Anti-inflammatory potential of isolates was evaluated based on inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production and tumor necrosis factor-alpha (TNF-α)-induced nuclear factor kappa B (NF-κB) activity with cell culture models. In the absence of cell growth inhibition, compounds 6, 8a, 9-11, 13, 21, and 24 reduced TNF-α-induced NF-κB activity with IC50 values ranging from 7.1 to 12.1 µM, comparable to the positive control (BAY 11-7082, IC50 = 9.7 µM). Compounds 6, 8a, 8b, and 11 showed significant NO-inhibitory activity with IC50 values ranging from 11.0 to 12.8 µM, being more active than the positive control (l-NMMA, IC50 = 22.7 µM). Structure-activity relationships indicated that NO inhibitory activity was significantly affected by C-8 substitution. Inhibition of LPS-induced nitric oxide synthase (iNOS) by 8b [(5S)-waltherione M, IC50 11.7 ± 0.8 µM] correlated with inhibition of iNOS mRNA expression. The biological potential of W. indica metabolites supports the traditional use of this plant for the treatment of inflammatory-related disorders.


Asunto(s)
Alcaloides , Malvaceae , Quinolinas , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Alcaloides/farmacología , Antiinflamatorios/farmacología , Malvaceae/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico
19.
J Agric Food Chem ; 71(3): 1477-1487, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36642968

RESUMEN

Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.


Asunto(s)
Virus de la Gastroenteritis Transmisible , Animales , Eugenol/farmacología , Inflamasomas/genética , Intestinos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis , Especies Reactivas de Oxígeno , Porcinos , Virus de la Gastroenteritis Transmisible/fisiología , Proteínas de Unión a Fosfato/metabolismo , Gasderminas/metabolismo
20.
J Sci Food Agric ; 103(4): 2106-2115, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36460906

RESUMEN

BACKGROUND: This experiment aimed to investigate effects of dietary l-theanine supplementation on pork quality and muscle fiber type transformation in finishing pigs. In a 30-day experiment, 18 healthy Duroc × Landrace × Yorkshire (DLY) pigs with an average body weight of 86.03 ± 0.83 kg were randomly divided into three groups (a basal diet or a basal diet supplemented with 500 and 1000 ppm l-theanine, respectively), with six duplicates and one pig per replicate. RESULTS: The results showed that dietary 1000 ppm l-theanine supplementation significantly reduced (P < 0.05) b*24 h and drip loss. Dietary 1000 ppm l-theanine supplementation significantly increased (P < 0.05) slow myosin heavy chain (MyHC) protein expression and the percentage of slow-twitch fibers, as well as significantly decreased (P < 0.05) fast MyHC protein expression and the percentage of fast-twitch fibers, accompanied by an increase in succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) activities and a decrease in lactate dehydrogenase (LDH) activity. In addition, the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway was activated by l-theanine. CONCLUSION: Together, this study demonstrated for the first time that dietary supplementation of 1000 ppm l-theanine can improve pork color and drip loss and promote muscle fiber type transformation from fast-twitch to slow-twitch in finishing pigs. © 2022 Society of Chemical Industry.


Asunto(s)
Carne de Cerdo , Carne Roja , Porcinos , Animales , Fibras Musculares Esqueléticas/metabolismo , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA