Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Curr Biol ; 32(21): 4707-4718.e8, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36115340

RESUMEN

Development is a highly dynamic process in which organisms often experience changes in both form and behavior, which are typically coupled to each other. However, little is known about how organismal-scale behaviors such as body contractility and motility impact morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organismal size, shape, and behavior. Using quantitative live imaging in a large population of developing animals, combined with molecular and biophysical experiments, we demonstrate that the muscular-hydraulic machinery that controls body movement also drives larva-polyp morphogenesis. We show that organismal size largely depends on cavity inflation through fluid uptake, whereas body shape is constrained by the organization of the muscular system. The generation of ethograms identifies different trajectories of size and shape development in sessile and motile animals, which display distinct patterns of body contractions. With a simple theoretical model, we conceptualize how pressures generated by muscular hydraulics can act as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illustrate how organismal contractility and motility behaviors can influence morphogenesis.


Asunto(s)
Anémonas de Mar , Animales , Larva , Morfogénesis
2.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33658318

RESUMEN

The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Neuronas Adrenérgicas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Células Cultivadas , Preescolar , Bases de Datos Genéticas , Femenino , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Masculino , Neuroblastoma/patología , Estudios Prospectivos , Proteínas Serina-Treonina Quinasas/fisiología , Proteína de Unión al GTP rac1/fisiología
3.
Cell Syst ; 5(3): 237-250.e8, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28843484

RESUMEN

While many tumors initially respond to chemotherapy, regrowth of surviving cells compromises treatment efficacy in the long term. The cell-biological basis of this regrowth is not understood. Here, we characterize the response of individual, patient-derived neuroblastoma cells driven by the prominent oncogene MYC to the first-line chemotherapy, doxorubicin. Combining live-cell imaging, cell-cycle-resolved transcriptomics, and mathematical modeling, we demonstrate that a cell's treatment response is dictated by its expression level of MYC and its cell-cycle position prior to treatment. All low-MYC cells enter therapy-induced senescence. High-MYC cells, by contrast, disable their cell-cycle checkpoints, forcing renewed proliferation despite treatment-induced DNA damage. After treatment, the viability of high-MYC cells depends on their cell-cycle position during treatment: newborn cells promptly halt in G1 phase, repair DNA damage, and form re-growing clones; all other cells show protracted DNA repair and ultimately die. These findings demonstrate that fast-proliferating tumor cells may resist cytotoxic treatment non-genetically, by arresting within a favorable window of the cell cycle.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Teóricos , Neuroblastoma/genética , Cultivo Primario de Células , Transcriptoma/genética
4.
Sci Rep ; 7: 46571, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28417973

RESUMEN

Cellular signaling systems precisely transmit information in the presence of molecular noise while retaining flexibility to accommodate the needs of individual cells. To understand design principles underlying such versatile signaling, we analyzed the response of the tumor suppressor p53 to varying levels of DNA damage in hundreds of individual cells and observed a switch between distinct signaling modes characterized by isolated pulses and sustained oscillations of p53 accumulation. Guided by dynamic systems theory we show that this requires an excitable network structure comprising positive feedback and provide experimental evidence for its molecular identity. The resulting data-driven model reproduced all features of measured signaling responses and is sufficient to explain their heterogeneity in individual cells. We present evidence that heterogeneity in the levels of the feedback regulator Wip1 sets cell-specific thresholds for p53 activation, providing means to modulate its response through interacting signaling pathways. Our results demonstrate how excitable signaling networks can provide high specificity, sensitivity and robustness while retaining unique possibilities to adjust their function to the physiology of individual cells.


Asunto(s)
Daño del ADN , Modelos Biológicos , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Humanos , Células MCF-7 , Proteína Fosfatasa 2C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA