Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Clin Immunol ; 44(2): 56, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277122

RESUMEN

Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus exclusively infecting humans, causing two distinct pathologies: varicella (chickenpox) upon primary infection and herpes zoster (shingles) following reactivation. In susceptible individuals, VZV can give rise to more severe clinical manifestations, including disseminated infection, pneumonitis, encephalitis, and vasculopathy with stroke. Here, we describe a 3-year-old boy in whom varicella followed a complicated course with thrombocytopenia, hemorrhagic and necrotic lesions, pneumonitis, and intermittent encephalopathy. Hemophagocytic lymphohistiocytosis (HLH) was strongly suspected and as the condition deteriorated, HLH therapy was initiated. Although the clinical condition improved, longstanding hemophagocytosis followed despite therapy. We found that the patient carries a rare monoallelic variant in autocrine motility factor receptor (AMFR), encoding a ubiquitin ligase involved in innate cytosolic DNA sensing and interferon (IFN) production through the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway. Peripheral blood mononuclear cells (PBMCs) from the patient exhibited impaired signaling downstream of STING in response dsDNA and 2'3'-cGAMP, agonists of cGAS and STING, respectively, and fibroblasts from the patient showed impaired type I IFN responses and significantly increased VZV replication. Overexpression of the variant AMFR R594C resulted in decreased K27-linked STING ubiquitination compared to WT AMFR. Moreover, ImageStream technology revealed reduced STING trafficking from ER to Golgi in cells expressing the patient AMFR R594C variant. This was supported by a dose-dependent dominant negative effect of expression of the patient AMFR variant as measured by IFN-ß reporter gene assay. Finally, lentiviral transduction with WT AMFR partially reconstituted 2'3'-cGAMP-induced STING-mediated signaling and ISG expression in patient PBMCs. This work links defective AMFR-STING signaling to severe VZV disease and hyperinflammation and suggests a direct role for cGAS-STING in the control of viral infections in humans. In conclusion, we describe a novel genetic etiology of severe VZV disease in childhood, also representing the first inborn error of immunity related to a defect in the cGAS-STING pathway.


Asunto(s)
Varicela , Herpes Zóster , Interferón Tipo I , Linfohistiocitosis Hemofagocítica , Neumonía , Preescolar , Humanos , Herpesvirus Humano 3/genética , Inmunidad Innata , Leucocitos Mononucleares/metabolismo , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Receptores del Factor Autocrino de Motilidad , Ubiquitina-Proteína Ligasas/genética , Masculino
2.
EMBO Rep ; 21(12): e51252, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33112036

RESUMEN

Respiratory infections, like the current COVID-19 pandemic, target epithelial cells in the respiratory tract. Alveolar macrophages (AMs) are tissue-resident macrophages located within the lung. They play a key role in the early phases of an immune response to respiratory viruses. AMs are likely the first immune cells to encounter SARS-CoV-2 during an infection, and their reaction to the virus will have a profound impact on the outcome of the infection. Interferons (IFNs) are antiviral cytokines and among the first cytokines produced upon viral infection. In this study, AMs from non-infectious donors are challenged with SARS-CoV-2. We demonstrate that challenged AMs are incapable of sensing SARS-CoV-2 and of producing an IFN response in contrast to other respiratory viruses, like influenza A virus and Sendai virus, which trigger a robust IFN response. The absence of IFN production in AMs upon challenge with SARS-CoV-2 could explain the initial asymptotic phase observed during COVID-19 and argues against AMs being the sources of pro-inflammatory cytokines later during infection.


Asunto(s)
COVID-19/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , SARS-CoV-2/inmunología , Antivirales/inmunología , COVID-19/virología , Células Cultivadas , Citocinas/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Evasión Inmune , Interferón Tipo I/inmunología , Pulmón/inmunología , Pulmón/virología , Pandemias
3.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31776283

RESUMEN

Interferon lambda 4 (IFN-λ4) is a recently identified enigmatic member of the interferon (IFN) lambda family. Genetic data suggest that the IFNL4 gene acts in a proviral and anti-inflammatory manner in patients. However, the protein is indistinguishable in vitro from the other members of the interferon lambda family. We have investigated the gene regulation of IFNL4 in detail and found that it differs radically from that of canonical antiviral interferons. Being induced by viral infection is a defining characteristic of interferons, but viral infection or overexpression of members of the interferon regulatory factor (IRF) family of transcription factors only leads to a minute induction of IFNL4 This behavior is evolutionarily conserved and can be reversed by inserting a functional IRF3 binding site into the IFNL4 promoter. Thus, the regulation of the IFNL4 gene is radically different and might explain some of the atypical phenotypes associated with the IFNL4 gene in humans.IMPORTANCE Recent genetic evidence has highlighted how the IFNL4 gene acts in a counterintuitive manner, as patients with a nonfunctional IFNL4 gene exhibit increased clearance of hepatitis C virus (HCV) but also increased liver inflammation. This suggests that the IFNL4 gene acts in a proviral and anti-inflammatory manner. These surprising but quite clear genetic data have prompted an extensive examination of the basic characteristics of the IFNL4 gene and its gene product, interferon lambda 4 (IFN-λ4). We have investigated the expression of the IFNL4 gene and found it to be poorly induced by viral infections. A thorough investigation of the IFNL4 promoter revealed a highly conserved and functional promoter, but also one that lacks the defining characteristic of interferons (IFNs), i.e., the ability to be effectively induced by viral infections. We suggest that the unique function of the IFNL4 gene is related to its noncanonical transcriptional regulation.


Asunto(s)
Evolución Molecular , Interferones/genética , Interferones/metabolismo , Células A549 , Animales , Antivirales/farmacología , Secuencia de Bases , Regulación de la Expresión Génica , Células HEK293 , Células Hep G2 , Hepacivirus/fisiología , Hepatitis C/metabolismo , Humanos , Inflamación , Interferones/clasificación , Interleucinas/clasificación , Interleucinas/genética , Interleucinas/farmacología , Hígado/patología , ARN Mensajero/metabolismo , Alineación de Secuencia , Células THP-1
4.
J Interferon Cytokine Res ; 39(10): 661-667, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31120365

RESUMEN

Genetic variation within the IFNL loci is associated with several diseases and evidence indicates that the IFNL genes have been subjects of strong selection during recent human evolution. The nonsynonymous rs30461 single nucleotide polymorphism (SNP), generating interferon (IFN)-λ1 D188N, shows a strong signature of positive selection in European and Asian populations. Nevertheless, genetic association studies have failed to show any coupling of rs30461 to diseases such as psoriasis and periodontitis. Based on these observations, we purified IFN-λ1 N188 and IFN-λ1 D188 to compare the biological activity of these 2 IFN-λ1 versions. Furthermore, we evaluated the secretion of the 2 different IFN-λ1 versions. We were unable to observe any differences between IFN-λ1 N188 and IFN-λ1 D188 based on biological activity or secretion that could account for the positive selection.


Asunto(s)
Interferones/genética , Interferones/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Polimorfismo de Nucleótido Simple , Células Hep G2 , Humanos
5.
Cytokine ; 124: 154519, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30139548

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and its progressive inflammatory form non-alcoholic steatohepatitis (NASH) are major health challenges due to a significant increase in their incidence and prevalence. While NAFLD is largely benign, the chronic liver inflammation in NASH patients may cause progression to liver cirrhosis and hepatocellular carcinoma. There is an urgent need for a better understanding of the factors, which drive the progression from NAFLD to NASH and how to use this information both to improve diagnostic and to develop new treatment strategies. Increasing evidence points to interferons (IFNs) as key players in NAFLD and particular in the progression to NASH. IFNs crucial role in disease development is supported by both genetic evidence and animal studies. In this review, we describe the involvement of both type I and type III IFNs in the development and progression of NAFLD and NASH.


Asunto(s)
Interferón Tipo I/metabolismo , Interferones/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Progresión de la Enfermedad , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Interferón Tipo I/genética , Interferones/genética , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Prevalencia , Receptores Toll-Like/metabolismo , Interferón lambda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA