Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4566, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296741

RESUMEN

The application of floating treatment wetlands (FTWs) is an innovative nature-based solution for the remediation of polluted water. The rational improvement of water treatment via FTWs is typically based on multifactorial experiments which are labor-intensive and time-consuming. Here, we used the response surface methodology (RSM) for the optimization of FTW's operational parameters for the remediation of water polluted by crude oil. The central composite design (CCD) of RSM was used to generate the experimental layout for testing the effect of the variables hydrocarbon, nutrient, and surfactant concentrations, aeration, and retention time on the hydrocarbon removal in 50 different FTW test systems planted with the common reed, Phragmites australis. The results from these FTW were used to formulate a mathematical model in which the computational data strongly correlated with the experimental results. The operational parameters were further optimized via modeling prediction plus experimental validation in test FTW systems. In the FTW with optimized parameters, there was a 95% attenuation of the hydrocarbon concentration, which was very close to the 98% attenuation predicted by the model. The cost-effectiveness ratio showed a reduction of the treatment cost up to $0.048/liter of wastewater. The approach showed that RSM is a useful strategy for designing FTW experiments and optimizing operational parameters.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Biodegradación Ambiental , Hidrocarburos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Humedales
2.
Sci Total Environ ; 815: 151961, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843771

RESUMEN

There is an increasing interest in treatment of oil sands process water (OSPW) via biofiltration with petroleum coke (PC) as a substratum. In fixed bed biofilters (FBBs) with PC, the dominance of anaerobic digestion of dissolved organics results in poor removal of naphthenic acids (NAs) along with a high degree of methanogenesis. In this study, the operation of FBBs was modified to improve OSPW remediation by supporting the filtering bed with aerobic naphthenic acid-degrading bacteria treating aerated OSPW (FBBbioaugmentation). The results were compared with a biofilter operated under controlled conditions (FBBcontrol). To this end, a consortium of three aerobic NAs-degrading bacterial strains was immobilized on PC as a top layer (10 cm). These bacteria were pre-screened for growth on 15 different NAs surrogates as a sole carbon source, and for the presence of catabolic genes coding alkane hydroxylase (CYP153) and alkane monooxygenase (alkB) enzymes. The results illustrated that biofiltration in FBBbioaugmentation removed 32% of classical NAs in 15 days; while in the FBBcontrol, degradation was limited to 19%. The degradation of fluorophore (aromatic) compounds was also improved from 16% to 39% for single ring (OI), 22% to 29% for double ring (OII), and 15% to 23% for three rings (OIII) compounds. DNA-Stable Isotope Probing revealed that potential hydrocarbons degraders such as Pseudomonas (inoculated), Pseudoxanthomonas (indigenous) were present up to 9.0% in the 13C-labelled DNA fraction. Furthermore, a high abundance of methylotrophs was observed in the Schmutzdecke, with Methylobacillus comprising more than two-third of the total community. This study shows that bioaugmentation rapidly improved OSPW remediation. Aeration mostly contributed to methane consumption in the top layer, thus minimizing its release into the environment.


Asunto(s)
Coque , Petróleo , Contaminantes Químicos del Agua , Bacterias , Ácidos Carboxílicos , Isótopos , Yacimiento de Petróleo y Gas , Agua , Contaminantes Químicos del Agua/análisis
3.
Appl Microbiol Biotechnol ; 104(4): 1809-1820, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31867694

RESUMEN

Constructed wetlands (CWs) are effective ecological remediation technologies for various contaminated water bodies. Here, we queried for benzene-degrading microbes in a horizontal subsurface flow CW with reducing conditions in the pore water and fed with benzene-contaminated groundwater. For identification of relevant microbes, we employed in situ microcosms (BACTRAPs, which are made from granulated activated carbon) coupled with 13C-stable isotope probing and Illumina sequencing of 16S rRNA amplicons. A significant incorporation of 13C was detected in RNA isolated from BACTRAPs loaded with 13C-benzene and exposed in the CW for 28 days. A shorter incubation time did not result in detectable 13C incorporation. After 28 days, members from four genera, namely Dechloromonas, Hydrogenophaga, and Zoogloea from the Betaproteobacteria and Arcobacter from the Epsilonproteobacteria were significantly labeled with 13C and were abundant in the bacterial community on the BACTRAPs. Sequences affiliated to Geobacter were also numerous on the BACTRAPs but apparently those microbes did not metabolize benzene as no 13C label incorporation was detected. Instead, they may have metabolized plant-derived organic compounds while using the BACTRAPs as electron sink. In representative wetland samples, sequences affiliated with Dechloromonas, Zoogloea, and Hydrogenophaga were present at relative proportions of up to a few percent. Sequences affiliated with Arcobacter were present at < 0.01% in wetland samples. In conclusion, we identified microbes of likely significance for benzene degradation in a CW used for remediation of contaminated water.


Asunto(s)
Benceno/metabolismo , Proteobacteria/clasificación , Proteobacteria/metabolismo , Humedales , Isótopos de Carbono , Proteobacteria/aislamiento & purificación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
4.
Appl Microbiol Biotechnol ; 99(23): 10323-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26264137

RESUMEN

Slow sand filtration (SSF) is an effective low-tech water treatment method for pathogen and particle removal. Yet despite its application for centuries, it has been uncertain to which extent pathogenic microbes are removed by mechanical filtration or due to ecological interactions such as grazing and competition for nutrients. In this study, we quantified the removal of bacterial faecal indicators, Escherichia coli and Enterococcus faecalis, from secondary effluent of a wastewater treatment plant and analysed the microbial community composition in compartments of laboratory model SSF columns. The columns were packed with different sand grain sizes and eliminated 1.6-2.3 log units of faecal indicators, which translated into effluents of bathing water quality according to the EU directive (<500 colony forming units of E. coli per 100 ml) for columns with small grain size. Most of that removal occurred in the upper filter area, the Schmutzdecke. Within that same zone, total bacterial numbers increased however, thus suggesting a specific elimination of the faecal indicators. The analysis of the microbial communities also revealed that some taxa were removed more from the wastewater than others. These results accentuate the contribution of biological mechanisms to water purification in SSF.


Asunto(s)
Enterococcus faecalis/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Filtración/métodos , Microbiología del Agua , Contaminantes del Agua , Purificación del Agua/métodos , Carga Bacteriana , Biota
5.
Chemosphere ; 117: 178-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25025478

RESUMEN

A hydroponic plant root mat filter (HPRMF) was compared over 7months with a horizontal subsurface flow constructed wetland (HSSF CW) regarding the removal of perchloroethene (PCE) (about 2 mg L(-1)) from a sulfate- (850 mg L(-1)) and ammonia-rich (50 mg L(-1)) groundwater with a low TOC content. At a mean area specific inflow PCE load of 56 mg m(-2)d(-1), after 4m from inlet, the mean PCE removal during summer time reached 97% in the HPRMF and almost 100% in the HSSF CW. Within the first 2m in the HSSF CW metabolites like dichloroethenes, vinyl chloride and ethene accumulated, their concentrations decreased further along the flow path. Moreover, the tidal operation (a 7-d cycle) in the HSSFCW decreased the accumulation of PCE metabolites within the first 1m of the bed. The carcinogenic degradation metabolite vinyl chloride was not detected in the HPRMF. The smaller accumulation of the degradation metabolites in the HPRMF correlated with its higher redox potential. It can be concluded from this study that HPRMF appears an interesting alternative for special water treatment tasks and that tidal operation will show some positive effects on the removal of the accumulated PCE metabolites in HSSF CW.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Poaceae/metabolismo , Tetracloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminación Química del Agua/prevención & control , Purificación del Agua/métodos , Humedales , Amoníaco/metabolismo , Biodegradación Ambiental , Filtración , Agua Subterránea/análisis , Agua Subterránea/química , Hidroponía , Proyectos Piloto , Raíces de Plantas/metabolismo , Sulfatos/metabolismo , Movimientos del Agua
6.
PLoS Genet ; 5(11): e1000714, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19893622

RESUMEN

Vinyl chloride (VC) is a human carcinogen and widespread priority pollutant. Here we report the first, to our knowledge, complete genome sequences of microorganisms able to respire VC, Dehalococcoides sp. strains VS and BAV1. Notably, the respective VC reductase encoding genes, vcrAB and bvcAB, were found embedded in distinct genomic islands (GEIs) with different predicted integration sites, suggesting that these genes were acquired horizontally and independently by distinct mechanisms. A comparative analysis that included two previously sequenced Dehalococcoides genomes revealed a contextually conserved core that is interrupted by two high plasticity regions (HPRs) near the Ori. These HPRs contain the majority of GEIs and strain-specific genes identified in the four Dehalococcoides genomes, an elevated number of repeated elements including insertion sequences (IS), as well as 91 of 96 rdhAB, genes that putatively encode terminal reductases in organohalide respiration. Only three core rdhA orthologous groups were identified, and only one of these groups is supported by synteny. The low number of core rdhAB, contrasted with the high rdhAB numbers per genome (up to 36 in strain VS), as well as their colocalization with GEIs and other signatures for horizontal transfer, suggests that niche adaptation via organohalide respiration is a fundamental ecological strategy in Dehalococccoides. This adaptation has been exacted through multiple mechanisms of recombination that are mainly confined within HPRs of an otherwise remarkably stable, syntenic, streamlined genome among the smallest of any free-living microorganism.


Asunto(s)
Chloroflexi/genética , Genoma Bacteriano , Cloruro de Vinilo/metabolismo , Chloroflexi/metabolismo , Transferencia de Gen Horizontal , Filogenia
7.
Radiat Res ; 168(4): 507-14, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17903038

RESUMEN

Extremely halophilic archaea are highly resistant to multiple stressors, including radiation, desiccation and salinity. To study the basis of stress resistance and determine the maximum tolerance to ionizing radiation, we exposed cultures of the model halophile Halobacterium sp. NRC-1 to four cycles of irradiation with high doses of 18-20 MeV electrons. Two independently obtained mutants displayed an LD(50) > 11 kGy, which is higher than the LD(50) of the extremely radiation-resistant bacterium Deinococcus radiodurans. Whole-genome transcriptome analysis comparing the mutants to the parental wild-type strain revealed up-regulation of an operon containing two single-stranded DNA-binding protein (RPA) genes, VNG2160 (rfa3) and VNG2162, and a third gene of unknown function, VNG2163. The putative transcription start site for the rfa3 operon was mapped approximately 40 bp upstream of the ATG start codon, and a classical TATA-box motif was found centered about 25 bp further upstream. We propose that RPA facilitates DNA repair machinery and/or protects repair intermediates to maximize the ionizing radiation resistance of this archaeon.


Asunto(s)
Regulación de la Expresión Génica Arqueal , Halobacterium/efectos de la radiación , Proteína de Replicación A/genética , Secuencia de Bases , Reparación del ADN , Halobacterium/genética , Dosificación Letal Mediana , Datos de Secuencia Molecular , Mutación , Operón , Regiones Promotoras Genéticas , Tolerancia a Radiación , Transcripción Genética
8.
J Bacteriol ; 187(5): 1659-67, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15716436

RESUMEN

We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An operon, dmsREABCD, encoding a putative regulatory protein, DmsR, a molybdopterin oxidoreductase of the DMSO reductase family (DmsEABC), and a molecular chaperone (DmsD) was identified by bioinformatics and confirmed as a transcriptional unit by reverse transcriptase PCR analysis. dmsR, dmsA, and dmsD in-frame deletion mutants were individually constructed. Phenotypic analysis demonstrated that dmsR, dmsA, and dmsD are required for anaerobic respiration on DMSO and TMAO. The requirement for dmsR, whose predicted product contains a DNA-binding domain similar to that of the Bat family of activators (COG3413), indicated that it functions as an activator. A cysteine-rich domain was found in the dmsR gene, which may be involved in oxygen sensing. Microarray analysis using a whole-genome 60-mer oligonucleotide array showed that the dms operon is induced during anaerobic respiration. Comparison of dmsR+ and DeltadmsR strains by use of microarrays showed that the induction of the dmsEABCD operon is dependent on a functional dmsR gene, consistent with its action as a transcriptional activator. Our results clearly establish the genes required for anaerobic respiration using DMSO and TMAO in an archaeon for the first time.


Asunto(s)
Dimetilsulfóxido/metabolismo , Halobacterium/metabolismo , Metilaminas/metabolismo , Anaerobiosis/genética , Anaerobiosis/fisiología , Mapeo Cromosómico , Eliminación de Gen , Halobacterium/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/genética , Filogenia , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA