Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Phys Chem A ; 128(12): 2323-2329, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38483325

RESUMEN

Studying the cleavage of the C═O bond during CO2 activation at room temperature is highly significant for comprehending the CO2 conversion processes. Herein, mass spectrometry experiments and density functional theory calculations indicate that the niobium carbide anions Nb3C4- can continuously convert five CO2 molecules to CO under thermal collision conditions, while the other clusters with less carbon ligands Nb3C1-3- reduce fewer CO2 molecules. Size-dependent reactivity of Nb3C1-4- cluster anions toward CO2 is observed. Interestingly, the carbon atoms in Nb3C4- not only act as highly active adsorption sites for CO2 but also serve as electron donors to reduce CO2. The stored electrons are released through a carbon-carbon coupling process. Our findings on the role of carbon ligands in enhancing transition metal carbide reactivity can offer new insights for designing active sites on catalysts with both high activity and selectivity.

2.
J Phys Chem Lett ; 14(34): 7597-7602, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37603698

RESUMEN

Dinitrogen (N2) activation and its chemical transformations are some of the most challenging topics in chemistry. Herein, we report that heteronuclear metal anions AuNbBO- can mediate the direct coupling of N2 and O2 to generate NO molecules. N2 first forms the nondissociative adsorption product AuNbBON2- on AuNbBO-. In the following reactions with two O2 molecules, two NO molecules are gradually released, with the formation of AuNbBO2N- and AuNbBO3-. In the reaction with the first O2, the generated nitrene radical (N••-) originating from the dissociated N2, induces the activation of O2. Subsequently, the second O2 is anchored and forms a superoxide radical (O2•-); this radical attacks the other N atom to form an N-O bond, releasing the second NO. The N••- and O2•- radicals play key roles in the reactions. The mechanism adopted in this direct oxidation of N2 by O2 to NO can be labeled as a Zeldovich-like mechanism.

3.
J Chem Phys ; 154(5): 054307, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33557555

RESUMEN

The activation and hydrogenation of nitrogen are central in industry and in nature. Through a combination of mass spectrometry and quantum chemical calculations, this work reports an interesting result that scandium nitride cations Sc3N+ can activate sequentially H2 and N2, and an amido unit (NH2) is formed based on density functional theory calculations, which is one of the inevitable intermediates in the N2 reduction reactions. If the activation step is reversed, i.e., sequential activation of first N2 and then H2, the reactivity decreases dramatically. An association mechanism, prevalent in some homogeneous catalysis and enzymatic mechanisms, is adopted in these gas-phase H2 and N2 activation reactions mediated by Sc3N+ cations. The mechanistic insights are important to understand the mechanism of the conversion of H2 and N2 to NH3 synthesis under ambient conditions.

4.
Phys Chem Chem Phys ; 22(46): 27357-27363, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33231227

RESUMEN

The heterogeneous oxidation of isoprene (C5H8) by metal-oxide particles, such as the typical mineral aerosols TiO2, plays an important role in the isoprene atmospheric chemistry. However, the underlying mechanism of C5H8 oxidation remains elusive owing to the complexities of aerosol surfaces and reaction channels. Herein, we report the gas-phase reactions of TixOy+ (x = 1-7, y = 1-14) cations with isoprene by using mass spectrometry and density functional theory (DFT) calculations. Five types of reaction channels were observed: association, hydrogen atom transfer (HAT), C-C bond cleavage, combined oxygen atom transfer (OAT) and HAT and combined OAT and C-C bond cleavage. It is noteworthy that formaldehyde is known as the major oxidation product of isoprene/hydroxyl radicals in the atmosphere. In addition, CO has not been observed in the reactions of isoprene with gas-phase ions. Therefore, the reaction mechanisms of CH2O and CO generation observed in Ti2O5+/C5H8 and Ti4O8+/C5H8 systems were further investigated by DFT calculations, and the calculated results are in agreement with the experimental observations. In these two reactions, both Ti and O atoms can be the adsorption sites for C5H8. The reaction channels and mechanistic information gained in these gas-phase model reactions may offer fundamental insights relevant to the corresponding oxidation processes over titanium oxide aerosols in the atmosphere.

5.
J Chem Phys ; 149(7): 074308, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134679

RESUMEN

Gas-phase vanadium oxide cluster cations and anions are prepared by laser ablation. The small cluster ions (<1000 amu) are mass-selected using a quadrupole mass filter and reacted with benzene in a linear ion trap reactor; large clusters (>1000 amu) with no mass selection are reacted with C6H6 in a fast flow reactor. Rich product variety is encountered in these reactions, and the reaction channels for small cationic and anionic systems are different. For large clusters, the reactivity patterns of (V2O5) n+ (n = 6-25) and (V2O5) n O- (n = 6-24) cluster series are very similar to each other, indicating that the charge state has little influence on the oxidation of benzene. In sharp contrast to the dramatic changes of reactivity of small clusters, a weakly size dependent reaction behavior of large (V2O5)6-25+ and (V2O5)6-24O- clusters is observed. Therefore, the charge state and the size are not the major factors influencing the reactivity of nanosized vanadium oxide cluster ions toward C6H6, which is not common in cluster science. In the reactions with benzene, the small and large reactive vanadium oxide cations show similar reactivity of hydroxyl radicals (OH•) toward C6H6 at higher and lower temperatures, respectively; different numbers of vibrational degrees of freedom and the released energy during the formation of adduct complexes can explain this intriguing correlation. The reactions investigated herein might be used as the models of how to realize the partial oxidation of benzene to phenol in a single step, and the observed mechanisms are helpful to understand the corresponding heterogeneous reactions, such as those over vanadium oxide aerosols and vanadium oxide catalysts.


Asunto(s)
Benceno/química , Nanoestructuras/química , Óxidos/química , Fenoles/síntesis química , Vanadio/química , Aniones/química , Cationes/química , Hidroxilación , Modelos Químicos , Estructura Molecular , Teoría Cuántica , Temperatura
6.
Chemistry ; 24(22): 5920-5926, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29424048

RESUMEN

The mass-selected Fe2 O+ cation mediated propane oxidation by O2 was investigated by mass spectrometry and density functional theory calculations. In the reaction of Fe2 O+ with C3 H8 , H2 was liberated by C-H bond activation to give Fe2 OC3 H6+ . Interestingly, when a mixture of C3 H8 /O2 was introduced into the reactor, an intense signal that corresponded to the Fe2 O2+ cation was present; the experiments indicated that O2 was activated in its reaction with Fe2 O(C3 H6 )+ to give Fe2 O2+ and C3 H6 O (acetone or propanal). A Langmuir-Hinshelwood-like mechanism was adopted in the propane oxidation reaction by O2 on gas-phase Fe2 O+ cations. In comparison with the absence of Fe2 O2+ in the reaction of Fe2 O+ with O2 , the ligand effect of C3 H6 on Fe2 OC3 H6+ is important in the oxygen activation reaction. The theoretical results are consistent with the experimental observations. The propane oxidation by O2 in the presence of Fe2 O+ might be applied as a model for alkane and O2 activations over iron oxide catalysts, and the mechanisms and kinetic data are useful for understanding corresponding heterogeneous reactions.

7.
Dalton Trans ; 44(7): 3128-35, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25573178

RESUMEN

Cerium-vanadium oxide cluster cations CeVO5(+) were generated by laser ablation, mass-selected using a quadrupole mass filter, thermalized through collisions with helium atoms, and then reacted with ethene molecules in a linear ion trap reactor. The cluster reactions have been characterized by time-of-flight mass spectrometry and density functional theory calculations. The CeVO5(+) cluster has a closed-shell electronic structure and contains a peroxide (O2(2-)) unit. The cluster bonded O2(2-) species is reactive enough to oxidize a C2H4 molecule to generate C2H4O2 that can be an acetic acid molecule. Atomic oxygen radicals (O(-)˙), superoxide radicals (O2(-)˙), and peroxides are the three common reactive oxygen species. The reactivity of cluster bonded O(-)˙ and O2(-)˙ radicals has been widely studied while the O2(2-) species were generally thought to be much less reactive or inert toward small molecules under thermal collision conditions. This work is among the first to report the reactivity of the peroxide unit on transition metal oxide clusters with hydrocarbon molecules, to the best of our knowledge.

8.
Chemphyschem ; 15(18): 4117-25, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25208512

RESUMEN

The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium-doped vanadium cluster cations CeV2O7(+) are generated by laser ablation, mass-selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time-of-flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen-atom transfer , 2) double oxygen-atom transfer , and 3) C=C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7(+), which gives rise to C=C bond cleavage of ethene. Neither Ce(x)O(y)(±) nor V(x)O(y)(±) alone possess the necessary topological and electronic properties to bring about such a reaction.

9.
J Am Chem Soc ; 135(8): 2991-8, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23368886

RESUMEN

Titanium and zirconium oxide cluster anions with dimensions up to nanosize are prepared by laser ablation and reacted with carbon monoxide in a fast low reactor. The cluster reactions are characterized by time-of-flight mass spectrometry and density functional theory calculations. The oxygen atom transfers from (TiO(2))(n)O(-) (n = 3-25) to CO and formations of (TiO(2))(n)(-) are observed, whereas the reactions of (ZrO(2))(n)O(-) (n = 3-25) with CO generate the CO addition products (ZrO(2))(n)OCO(-), which lose CO(2) upon the collisions (studied for n = 3-9) with a crossed helium beam. The computational study indicates that the (MO(2))(n)O(-) (M = Ti, Zr; n = 3-8) clusters are atomic radical anion (O(-)) bonded systems, and the energetics for CO oxidation by the O(-) radicals to form CO(2) is strongly dependent on the metals as well as the cluster size for the titanium system. Atomic oxygen radical anions are important reactive intermediates, while it is difficult to capture and characterize them for condensed phase systems. The reactivity pattern of the O(-)-bonded (TiO(2))(n)O(-) and (ZrO(2))(n)O(-) correlates very well with different behaviors of titania and zirconia supports in the low-temperature catalytic CO oxidation.

12.
Chemistry ; 17(12): 3449-57, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21328493

RESUMEN

Aluminum-vanadium bimetallic oxide cluster anions (BMOCAs) have been prepared by laser ablation and reacted with ethane and n-butane in a fast-flow reactor. A time-of-flight mass spectrometer was used to detect the cluster distribution before and after the reactions. The observation of hydrogen-containing products AlVO(5)H(-) and Al(x)V(4-x)O(11-x)H(-) (x=1-3) strongly suggests that AlVO(5)(-) and Al(x)V(4-x)O(11-x)(-) (x=1-3) can react with ethane and n-butane by means of an oxidative dehydrogenation process at room temperature. Density functional theory studies have been carried out to investigate the structural, bonding, electronic, and reactive properties of these BMOCAs. Terminal-oxygen-centered radicals (O(t)(.)) were found in all of the reactive clusters, and the O(t)(.) atoms, which prefer to be bonded with Al rather than V atoms, are the active sites of these clusters. All the hydrogen-abstraction reactions are favorable both thermodynamically and kinetically. To the best of our knowledge, this is the first example of hydrogen-atom abstraction by BMOCAs and may shed light on understanding the mechanisms of C−−H activation on the surface of alumina-supported vanadia catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA