Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Infect Dis ; 24(1): 861, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187759

RESUMEN

BACKGROUND: Microbiological diagnosis of pulmonary tuberculosis (PTB) is hampered by a low pathogen burden, low compliance and unreliable sputum sampling. Although endobronchial ultrasound-guided transbronchoscopic lung biopsy (EBUS-TBLB) has been found to be useful for the assessment of intrapulmonary nodules in adults, few data are available for the clinical diagnosis of pulmonary tuberculosis. Here, we evaluated EBUS-TBLB as a diagnostic procedure in adult patients with radiologically suspected intrapulmonary tuberculous nodules. METHODS: This was a retrospective analysis of patients admitted with pulmonary nodules between January 2022 and January 2023 at Hangzhou Red Cross Hospital. All patients underwent EBUS-TBLB, and lung biopsy samples were obtained during hospitalization. All samples were tested for Mycobacterium tuberculosis using acid‒fast smears, Bactec MGIT 960, Xpert MTB/RIF, next-generation sequencing (NGS), and DNA (TB‒DNA) and RNA (TB‒RNA). The concordance between different diagnostic methods and clinical diagnosis was analysed via kappa concordance analysis. The diagnostic efficacy of different diagnostic methods for PTB was analysed via ROC curve. RESULTS: A total of 107 patients were included in this study. Among them, 86 patients were diagnosed by EBUS-TBLB, and the overall diagnostic rate was 80.37%. In addition, 102 enrolled patients had benign lesions, and only 5 were diagnosed with lung tumours. Univariate analysis revealed that the diagnostic rate of EBUS-TBLB in pulmonary nodules was related to the location of the probe. The consistency analysis and ROC curve analysis revealed that NGS had the highest concordance with the clinical diagnosis results (agreement = 78.50%, κ = 0.558) and had the highest diagnostic efficacy for PTB (AUC = 0.778). In addition, Xpert MTB/RIF + NGS had the highest concordance with the clinical diagnosis results (agreement = 84.11%, κ = 0.667) and had the highest efficacy in the diagnosis of PTB (AUC = 0.826). CONCLUSION: EBUS-TBLB is a sensitive and safe method for the diagnosis of pathological pulmonary nodules. Xpert MTB/RIF combined with NGS had the highest diagnostic efficacy and can be used in the initial diagnosis of PTB.


Asunto(s)
Broncoscopía , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/patología , Tuberculosis Pulmonar/microbiología , Broncoscopía/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Adulto , Anciano , Pulmón/patología , Pulmón/microbiología , Pulmón/diagnóstico por imagen , Biopsia Guiada por Imagen/métodos , Sensibilidad y Especificidad
2.
Nutr Diabetes ; 14(1): 45, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886355

RESUMEN

BACKGROUND/OBJECTIVES: Increased free fatty acid (FFA) promotes adiponectin secretion in healthy subjects and induces inflammation in diabetes. Given the potential pro-inflammatory role of adiponectin in "adiponectin paradox", we performed this study in patients with type 2 diabetes mellitus (T2DM) to assess the association of FFA with adiponectin and to investigate whether adiponectin mediates FFA-related inflammation. METHODS: This cross-sectional study consisted of adult patients with T2DM. FFA, adiponectin, and tumor necrosis factor-α (TNF-α) were assayed from fasting venous blood after overnight fasting for at least 8 h. Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between FFA and adiponectin. Mediation analysis was performed to determine the mediating effect of adiponectin on the association between FFA and TNF-α. RESULTS: This study included 495 participants, with 332 males (67.1%) and a mean age of 47.0 ± 11.2 years. FFA was positively associated with adiponectin (b = 0.126, 95%CI: 0.036-0.215, P = 0.006) and was the main contributor to the increase of adiponectin (standardized b = 0.141). The RCS analysis demonstrated that adiponectin increased with FFA when FFA was less than 0.7 mmol/L but did not further increase thereafter (Poverall < 0.001 and Pnon-linear < 0.001). In addition, adiponectin mediated the association between FFA and TNF-α. The mediating effect was 0.08 (95%CI: 0.03-0.13, P = 0.003) and the mediating effect percentage was 26.8% (95%CI: 4.5-49.2, P = 0.02). CONCLUSIONS: In patients with T2DM, FFA was positively associated with adiponectin when FFA was less than 0.7 mmol/L. Elevated adiponectin mediated FFA-related inflammation. This study may provide insights into the pro-inflammatory effect of adiponectin in T2DM.


Asunto(s)
Adiponectina , Diabetes Mellitus Tipo 2 , Ácidos Grasos no Esterificados , Factor de Necrosis Tumoral alfa , Humanos , Adiponectina/sangre , Masculino , Ácidos Grasos no Esterificados/sangre , Femenino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/sangre , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Adulto , Inflamación/sangre
3.
J Mol Neurosci ; 74(1): 23, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381220

RESUMEN

Neuronal apoptosis is crucial in the pathophysiology of ischemic stroke (IS), albeit its underly24ing mechanism remaining elusive. Investigating the mechanism of neuronal apoptosis in the context of IS holds substantial clinical value for enhancing the prognosis of IS patients. Notably, the MRPS9 gene plays a pivotal role in regulating mitochondrial function and maintaining structural integrity. Utilizing bioinformatic tactics and the extant gene expression data related to IS, we conducted differential analysis and weighted correlation network analysis (WGCNA) to select important modules. Subsequent gene interaction analysis via the STRING website facilitated the identification of the key gene-mitochondrial ribosomal protein S9 (MRPS9)-that affects the progression of IS. Moreover, possible downstream signaling pathways, namely PI3K/Akt/mTOR, were elucidated via Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) pathway analysis. Experimental models were established utilizing oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) in mice. Changes in gene and protein expression, as well as cell proliferation and apoptosis, were monitored through qPCR, WB, CCK8, and flow cytometry. An OGD/R cell model was further employed to investigate the role of MRPS9 in IS post transfusion of MRPS9 overexpression plasmids into cells. Further studies were conducted by transfecting overexpressed cells with PI3K/Akt/mTOR signaling pathway inhibitor LY294002 to unveil the mechanism of MRPS9 in IS. Bioinformatic analysis revealed a significant underexpression of MRPS9 in ischemic stroke patients. Correspondingly, in vitro experiments with HN cells subjected to OGD/R treatment demonstrated a marked reduction in MRPS9 expression, accompanied by a decline in cell viability, and an increase cell apoptosis. Notably, the overexpression of MRPS9 mitigated the OGD/R-induced decrease in cell viability and augmentation of apoptosis. In animal models, MRPS9 expression was significantly lower in the MCAO/R group compared to the sham surgery group. Further, the KEGG pathway analysis associated MRPS9 expression with the PI3K/Akt/mTOR signaling pathway. In cells treated with the specific PI3K/Akt/mTOR inhibitor LY294002, phosphorylation levels of Akt and mTOR were decreased, cell viability decreased, and apoptosis increased compared to the MRPS9 overexpression group. These findings collectively indicate that MRPS9 overexpression inhibits PI3K/Akt/mTOR pathway activation, thereby protecting neurons from apoptosis and impeding IS progression. However, the PI3K/Akt/mTOR inhibitor LY294002 is capable of counteracting the protective effect of MRPS9 overexpression on neuronal apoptosis and IS. Our observations underscore the potential protective role of MRPS9 in modulating neuronal apoptosis and in attenuating the pathophysiological developments associated with IS. This is achieved through the regulation of the PI3K/Akt/mTOR pathway. These insights forge new perspectives and propose novel targets for the strategic diagnosis and treatment of IS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fosfatidilinositol 3-Quinasas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Apoptosis
4.
J Colloid Interface Sci ; 658: 865-878, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157611

RESUMEN

Aluminum alloy (Al alloy) suffers from severe corrosion in acidic solution. Two-dimensional (2D) MXene-based composite coatings show great prospects for corrosion protection on metals used in special conditions. The composite coatings still face challenges in complex functionalization and orientation control. In harsh conditions, the long-term ability and roles of MXene in corrosion protection are still not clear. Here, a bio-inspired myristic-calcium chloride-Ti3C2Tx MXene (MA + CaCl2 + MXene) composite coating is successfully prepared on aluminum alloy (Al alloy) by electrodeposition process. Electrochemical tests, surface morphology, and chemical composition are analyzed to investigate the corrosion resistance and protection mechanism of the MXene coating in acidic solution (0.5 M H2SO4 + 2 ppm HF). As a result, the incorporation of MXene can significantly reduce corrosion current density (7.498 × 10-8 A/cm2) by âˆ¼ 5 orders of magnitude and impedance modulus at 0.01 Hz (|Z|0.01 Hz) value of the composite coating is 196.8 Ω·cm2, which is over 4 times higher than that of bare Al alloy (40.74 Ω·cm2) after immersion test for 72 h. Furthermore, the in-situ corrosion test confirms the enhanced corrosion resistance of the MA + CaCl2 + MXene composite coating. The MXene can increase coating thickness to 23.6 ± 0.4 µm, reduce porosity to (5.845 ± 1) × 10-5, decrease the diffusion coefficients of H+ to (1.587 ± 0.3) × 10-9 cm2/s, and enhance the adhesion of the coating to the substrate (the delamination time exceeds 5 h), thus providing improved anti-corrosion ability. This strategy opens up new prospects for construction of 2D MXene-based anti-corrosion coatings.

5.
Cancer Cell Int ; 23(1): 267, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946181

RESUMEN

BACKGROUND: Disulfidptosis and Ferroptosis are two novel forms of cell death. Although their mechanisms differ, research has shown that there is a relationship between the two. Investigating the connection between these two forms of cell death can further deepen our understanding of the development and progression of cancer, and provide better prediction models for accurate prognosis. METHODS: In this study, RNA sequencing (RNA-seq) data, clinical data, single nucleotide polymorphism (SNP) data, and single-cell sequencing data were obtained from public databases. We used weighted gene co-expression network analysis (WGCNA) and unsupervised clustering to identify new Disulfidptosis/Ferroptosis-Related Genes (DFRG), and constructed a LASSO COX prognosis model that was externally validated. To further explore this novel signature, pathway and function analysis was performed, and differences in gene mutation frequency between high- and low-risk groups were studied. Importantly, we also conducted research on immune checkpoint, immune cell infiltration levels and immune resistance indicators, in addition to analyzing real clinical immunotherapy data. RESULTS: We have identified four optimal disulfidptosis/ferroptosis-related genes (ODFRGs) that are differentially expressed and associated with the prognosis of Lung Adenocarcinoma (LUAD). These genes include GMPR, MCFD2, MRPL13, and SALL2. Based on these ODFRGs, we constructed a robust prognostic model in this study, and the high-risk group showed significantly lower overall survival (OS) compared to the low-risk group. Furthermore, this model can also predict the immunotherapy outcomes of LUAD patients to some extent.

6.
Front Immunol ; 14: 1179742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622116

RESUMEN

Background: Cuproptosis is a novel form of programmed cell death that differs from other types such as pyroptosis, ferroptosis, and autophagy. It is a promising new target for cancer therapy. Additionally, immune-related genes play a crucial role in cancer progression and patient prognosis. Therefore, our study aimed to create a survival prediction model for lung adenocarcinoma patients based on cuproptosis and immune-related genes. This model can be utilized to enhance personalized treatment for patients. Methods: RNA sequencing (RNA-seq) data of lung adenocarcinoma (LUAD) patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The levels of immune cell infiltration in the GSE68465 cohort were determined using gene set variation analysis (GSVA), and immune-related genes (IRGs) were identified using weighted gene coexpression network analysis (WGCNA). Additionally, cuproptosis-related genes (CRGs) were identified using unsupervised clustering. Univariate COX regression analysis and least absolute shrinkage selection operator (LASSO) regression analysis were performed to develop a risk prognostic model for cuproptosis and immune-related genes (CIRGs), which was subsequently validated. Various algorithms were utilized to explore the relationship between risk scores and immune infiltration levels, and model genes were analyzed based on single-cell sequencing. Finally, the expression of signature genes was confirmed through quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC), and Western blotting (WB). Results: We have identified 5 Oncogenic Driver Genes namely CD79B, PEBP1, PTK2B, STXBP1, and ZNF671, and developed proportional hazards regression models. The results of the study indicate significantly reduced survival rates in both the training and validation sets among the high-risk group. Additionally, the high-risk group displayed lower levels of immune cell infiltration and expression of immune checkpoint compared to the low-risk group.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Algoritmos , Apoptosis , Neoplasias Pulmonares/genética , Proteínas Supresoras de Tumor
7.
Front Pharmacol ; 14: 1192434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521466

RESUMEN

Background: Breast invasive carcinoma (BRCA) is a malignant tumor with high morbidity and mortality, and the prognosis is still unsatisfactory. Both ferroptosis and cuproptosis are apoptosis-independent cell deaths caused by the imbalance of corresponding metal components in cells and can affect the proliferation rate of cancer cells. The aim in this study was to develop a prognostic model of cuproptosis/ferroptosis-related genes (CFRGs) to predict survival in BRCA patients. Methods: Transcriptomic and clinical data for breast cancer patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cuproptosis and ferroptosis scores were determined for the BRCA samples from the TCGA cohort using Gene Set Variation Analysis (GSVA), followed by weighted gene coexpression network analysis (WGCNA) to screen out the CFRGs. The intersection of the differentially expressed genes grouped by high and low was determined using X-tile. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) were used in the TGCA cohort to identify the CFRG-related signature. In addition, the relationship between risk scores and immune infiltration levels was investigated using various algorithms, and model genes were analyzed in terms of single-cell sequencing. Finally, the expression of the signature genes was validated with quantitative real-time PCR (qRT‒PCR) and immunohistochemistry (IHC). Results: A total of 5 CFRGs (ANKRD52, HOXC10, KNOP1, SGPP1, TRIM45) were identified and were used to construct proportional hazards regression models. The high-risk groups in the training and validation sets had significantly worse survival rates. Tumor mutational burden (TMB) was positively correlated with the risk score. Conversely, Tumor Immune Dysfunction and Exclusion (TIDE) and tumor purity were inversely associated with risk scores. In addition, the infiltration degree of antitumor immune cells and the expression of immune checkpoints were lower in the high-risk group. In addition, risk scores and mTOR, Hif-1, ErbB, MAPK, PI3K/AKT, TGF-ß and other pathway signals were correlated with progression. Conclusion: We can accurately predict the survival of patients through the constructed CFRG-related prognostic model. In addition, we can also predict patient immunotherapy and immune cell infiltration.

8.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2410-2429, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37401601

RESUMEN

The current linear economy model relies on fossil energy and increases CO2 emissions, which contributes to global warming and environmental pollution. Therefore, there is an urgent need to develop and deploy technologies for carbon capture and utilization to establish a circular economy. The use of acetogens for C1-gas (CO and CO2) conversion is a promising technology due to high metabolic flexibility, product selectivity, and diversity of the products including chemicals and fuels. This review focuses on the physiological and metabolic mechanisms, genetic and metabolic engineering modifications, fermentation process optimization, and carbon atom economy in the process of C1-gas conversion by acetogens, with the aim to facilitate the industrial scale-up and carbon negative production through acetogen gas fermentation.


Asunto(s)
Dióxido de Carbono , Gases , Fermentación , Gases/metabolismo , Dióxido de Carbono/metabolismo , Ingeniería Metabólica , Carbono/metabolismo
9.
Cancer Biol Med ; 20(8)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37381714

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant gastrointestinal cancer with a 5-year survival rate of only 9%. Of PDAC patients, 15%-20% are eligible for radical surgery. Gemcitabine is an important chemotherapeutic agent for patients with PDAC; however, the efficacy of gemcitabine is limited due to resistance. Therefore, reducing gemcitabine resistance is essential for improving survival of patients with PDAC. Identifying the key target that determines gemcitabine resistance in PDAC and reversing gemcitabine resistance using target inhibitors in combination with gemcitabine are crucial steps in the quest to improve survival prognosis in patients with PDAC. METHODS: We constructed a human genome-wide CRISPRa/dCas 9 overexpression library in PDAC cell lines to screen key targets of drug resistance based on sgRNA abundance and enrichment. Then, co-IP, ChIP, ChIP-seq, transcriptome sequencing, and qPCR were used to determine the specific mechanism by which phospholipase D1 (PLD1) confers resistance to gemcitabine. RESULTS: PLD1 combines with nucleophosmin 1 (NPM1) and triggers NPM1 nuclear translocation, where NPM1 acts as a transcription factor to upregulate interleukin 7 receptor (IL7R) expression. Upon interleukin 7 (IL-7) binding, IL7R activates the JAK1/STAT5 signaling pathway to increase the expression of the anti-apoptotic protein, BCL-2, and induce gemcitabine resistance. The PLD1 inhibitor, Vu0155069, targets PLD1 to induce apoptosis in gemcitabine-resistant PDAC cells. CONCLUSIONS: PLD1 is an enzyme that has a critical role in PDAC-associated gemcitabine resistance through a non-enzymatic interaction with NPM1, further promoting the downstream JAK1/STAT5/Bcl-2 pathway. Inhibiting any of the participants of this pathway can increase gemcitabine sensitivity.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Gemcitabina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Interleucina-7/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/farmacología , Neoplasias Pancreáticas
10.
Front Plant Sci ; 14: 1174844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123827

RESUMEN

Introduction: Solanum rostratum, an annual malignant weed, has seriously damaged the ecological environment and biodiversity of invasion area. This alien plant gains a competitive advantage by producing some new phytotoxic substances to inhibit the growth of native plants, thus achieving successful invasion. However, the chemical structures, inhibitory functions and action mechanisms of phytotoxic substances of S. rostratum remain unclear. Methods: In this study, to clarify the chemical structures of phytotoxic substances from S. rostratum, we isolated phenylpropanoid amides from the plant. Their structures were identified by comprehensive HR-ESIMS, NMR and ECD data. And the inhibitory functions of isolated phenylpropanoid amides on one model plant (Arabidopsis thaliana) were also investigated. In addition, the action mechanisms of active phenylpropanoid amides were revealed by antioxidant-related enzymes [Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD)] activities and corresponding molecular docking analyses. Results and Discussion: Phytochemical research on the whole plant of S. rostratum led to the isolation and identification of four new phenylpropanoid amides (1-4), together with two known analogues (5-6). All the compounds showed phytotoxic effects with varying levels on the seed germination and root elongation of one model plant (Arabidopsis thaliana), especially compound 2 and 4. Likewise, compounds 2 and 4 displayed potent inhibitory effects on antioxidant-related enzyme (POD). In addition, compounds 2 and 4 formed common conventional hydrogen bonds with residues Ala34 and Ser35 in POD revealed by molecular docking analyses. These findings not only helped to reveal the invasion mechanism of S. rostratum from the perspective of "novel weapons hypothesis", but also opened up new ways for the exploitation and utilization of S. rostratum.

11.
Clin Exp Pharmacol Physiol ; 50(2): 132-139, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048566

RESUMEN

Circular RNAs (circRNAs) play a vital role in the regulation of Mycobacterium tuberculosis (M.tb) by macrophages. In this project, the potential role of hsa_circ_0001204 in M.tb-infected macrophages is explored. Hsa_circ_0001204 was determined in the patients with tuberculosis (TB) and M.tb-infected macrophages. Its effect on the survival of M.tb and the apoptosis and inflammation of M.tb-infected macrophages was evaluated. Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signalling was detected by western blotting and immunofluorescence. TB patients and M.tb-infected THP-1 cells showed the significant downregulation of hsa_circ_0001204. Upregulating hsa_circ_0001204 reduced M.tb survival and suppressed the apoptosis and inflammatory response of THP-1 cells. The TLR4/NF-κB signalling pathway could be inhibited by hsa_circ_0001204 overexpression, which was activated by M.tb-infection. Hsa_circ_0001204 confers protective effects in M.tb-infected THP-1 cells, at least partly via the inhibition of TLR4/NF-κB signalling pathway.


Asunto(s)
MicroARNs , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , FN-kappa B/metabolismo , MicroARNs/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Macrófagos/metabolismo , Tuberculosis/genética , Tuberculosis/metabolismo , Tuberculosis/microbiología
12.
Proc Natl Acad Sci U S A ; 119(45): e2210809119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322773

RESUMEN

Inflammatory pathways usually utilize negative feedback regulatory systems to prevent tissue damage arising from excessive inflammatory response. Whether such negative feedback mechanisms exist in inflammasome activation remains unknown. Gasdermin D (GSDMD) is the pyroptosis executioner of downstream inflammasome signaling. Here, we found that GSDMD, after its cleavage by caspase-1/11, utilizes its RFWK motif in the N-terminal ß1-ß2 loop to inhibit the activation of caspase-1/11 and downstream inflammation in a negative feedback manner. Furthermore, an RFWK motif-based peptide inhibitor can inhibit caspase-1/11 activation and its downstream substrates GSDMD and interleukin-1ß cleavage, as well as lipopolysaccharide-induced sepsis in mice. Collectively, these findings provide a demonstration of the N-terminal fragment of GSDMD as a negative feedback regulator controlling inflammasome activation and a detailed delineation of the underlying inhibitory mechanism.


Asunto(s)
Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Animales , Ratones , Caspasa 1/metabolismo , Retroalimentación , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros/farmacología
13.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145870

RESUMEN

In this study, magnetic fly ash was prepared with fly ash and nano-magnetic Fe3O4, obtained by co-precipitation. Then, a magnetic fly ash/polydimethylsiloxane (MFA@PDMS) sponge was prepared via simple dip-coating PDMS containing ethanol in magnetic fly ash aqueous suspension and solidifying, whereby Fe3O4 played a vital role in achieving the uniformity of the FA particle coating on the skeletons of the sponge. The presence of the PDMS matrix made the sponge super-hydrophobic with significant lubricating oil absorption capacity; notably, it took only 10 min for the material to adsorb six times its own weight of n-hexane (oil phase). Moreover, the MFA@PDMS sponge demonstrated outstanding recyclability and stability, since no decline in absorption efficiency was observed after more than eight cycles. Furthermore, the stress-strain curves of 20 compression cycles presented good overlap, i.e., the maximum stress was basically unchanged, and the sponge was restored to its original shape, indicating that it had good mechanical properties, elasticity, and fatigue resistance.

14.
Mediators Inflamm ; 2022: 1755416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052307

RESUMEN

Objectives: Following cerebral ischemia, microRNA- (miR-) 29b in circulating blood is downregulated. This study investigates the underlying mechanism and implications of miR-29b in leukocyte induction. Methods: miR-29b from stroke patients and rats with middle cerebral artery occlusion (MCAO) were assessed using real-time polymerase chain reaction (PCR). miR-29b agomir was used to increase miR-29b expression in leukocytes via intravenous injection. C1q and tumor necrosis factor (C1QTNF) 6, interleukin- (IL-) 1ß, zonula occludens- (ZO-) 1, occludin, and ischemic outcomes were assessed in MCAO rats. Additionally, hCMEC/D3 cells were subjected to oxygen-glucose deprivation (OGD) and cocultured with HL-60 cells. Results: miR-29b levels in neutrophils were found to be significantly lower in stroke patients compared with healthy controls, which may indicate its high diagnostic sensitivity and specificity for stroke. Moreover, miR-29b levels in leukocytes showed a negative correlation with National Institute of Health Stroke Scale (NIHSS) scores and C1QTNF6 levels. In MCAO rats, miR-29b overexpression reduced brain infarct volume and brain edema, decreasing IL-1ß levels in leukocytes and in the brain 24 hours poststroke. miR-29b attenuated IL-1ß expression via C1QTNF6 inhibition, leading to decreased blood-brain barrier (BBB) disruption and leukocyte infiltration. Moreover, miR-29b overexpression in HL-60 cells downregulated OGD-induced hCMEC/D3 cell apoptosis and increased ZO-1 and occludin levels in vitro. Conclusion: Leukocytic miR-29b attenuates inflammatory response by augmenting BBB integrity through C1QTNF6, suggesting a novel miR-29b-based therapeutic therapy for ischemic stroke.


Asunto(s)
Barrera Hematoencefálica , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Glucosa/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/patología , Accidente Cerebrovascular Isquémico/metabolismo , MicroARNs/metabolismo , Ocludina/metabolismo , Ratas
15.
Front Endocrinol (Lausanne) ; 13: 935906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157452

RESUMEN

Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic in many countries around the world. The virus is highly contagious and has a high fatality rate. Lung adenocarcinoma (LUAD) patients may have higher susceptibility and mortality to COVID-19. While Paxlovid is the first oral drug approved by the U.S. Food and Drug Administration (FDA) for COVID-19, its specific drug mechanism for lung cancer patients infected with COVID-19 remains to be further studied. Methods: COVID-19 related genes were obtained from NCBI, GeneCards, and KEGG, and then the transcriptome data for LUAD was downloaded from TCGA. The drug targets of Paxlovid were revealed through BATMAN-TCM, DrugBank, SwissTargetPrediction, and TargetNet. The genes related to susceptibility to COVID-19 in LUAD patients were obtained through differential analysis. The interaction of LUAD/COVID-19 related genes was evaluated and displayed by STRING, and a COX risk regression model was established to screen and evaluate the correlation between genes and clinical characteristics. The Venn diagram was drawn to select the candidate targets of Paxlovid against LUAD/COVID-19, and the functional analysis of the target genes was performed using KEGG and GO enrichment analysis. Finally, Cytoscape was used to screen and visualize the Hub Gene, and Autodock was used for molecular docking between the drug and the target. Result: Bioinformatics analysis was performed by combining COVID-19-related genes with the gene expression and clinical data of LUAD, including analysis of prognosis-related genes, survival rate, and hub genes screened out by the prognosis model. The key targets of Paxlovid against LUAD/COVID-19 were obtained through network pharmacology, the most important targets include IL6, IL12B, LBP. Furthermore, pathway analysis showed that Paxlovid modulates the IL-17 signaling pathway, the cytokine-cytokine receptor interaction, during LUAD/COVID-19 treatment. Conclusions: Based on bioinformatics and network pharmacology, the prognostic signature of LUAD/COVID-19 patients was screened. And identified the potential therapeutic targets and molecular pathways of Paxlovid Paxlovid in the treatment of LUAD/COVID. As promising features, prognostic signatures and therapeutic targets shed light on improving the personalized management of patients with LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Tratamiento Farmacológico de COVID-19 , COVID-19 , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , COVID-19/genética , Biología Computacional , Combinación de Medicamentos , Humanos , Interleucina-17 , Interleucina-6 , Lactamas , Leucina , Simulación del Acoplamiento Molecular , Farmacología en Red , Nitrilos , Prolina , Receptores de Citocinas , Ritonavir , SARS-CoV-2/genética , Estados Unidos
16.
Eur J Histochem ; 66(2)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35603939

RESUMEN

Recent evidence suggests that endoplasmic reticulum (ER) stress plays a vital role in inflammatory bowel disease (IBD). Therefore, the aim of this study was to investigate the mechanism by which ER stress promotes inflammatory response in IBD. The expression of Gro-α, IL-8 and ER stress indicator Grp78 in colon tissues from patients with Crohn's disease (CD) and colonic carcinoma was analyzed by immunohistochemistry staining. Colitis mouse model was established by the induction of trinitrobenzene sulphonic acid (TNBS), and the mice were treated with ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Then the body weight, colon length and colon inflammation were evaluated, and Grp78 and Gro-α in colon tissues were detected by immunohistochemistry. Epithelial cells of colon cancer HCT116 cells were treated with tunicamycin to induce ER stress. Grp78 was detected by Western blot, and chemokines were measured by PCR and ELISA. The expression levels of Grp78, Gro-α and IL-8 were significantly upregulated in intestinal tissues of CD patients. Mice with TNBS induced colitis had increased expression of Grp78 and Gro-α in colonic epithelia. TUDCA reduced the severity of TNBS-induced colitis. In HCT116 cells, tunicamycin increased the expression of Grp78, Gro-α and IL-8 in a concentration-dependent manner. Furthermore, p38 MAPK inhibitor significantly inhibited the upregulation of Gro-α and IL-8 induced by tunicamycin. In conclusion, ER stress promotes inflammatory response in IBD, and the effects may be mediated by the activation of p38 MAPK signaling pathway.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Colitis/inducido químicamente , Colitis/patología , Estrés del Retículo Endoplásmico/fisiología , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-8/efectos adversos , Ratones , Ácido Trinitrobencenosulfónico/toxicidad , Tunicamicina/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología
17.
Pharm Biol ; 60(1): 1055-1062, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35634726

RESUMEN

CONTEXT: Mulisan decoction (MLS) is a classic formula of traditional Chinese medicine for treating hyperhidrosis. The mechanism remains unclear. OBJECTIVE: To investigate the antiperspirant effect and underlying mechanisms of MLS. MATERIALS AND METHODS: Fifty rats were divided into control, model, and three doses of MLS intervention groups (n = 10). Rats except for control group were induced diseases features of the applicable scope of MLS via i.p. reserpine (0.5 mg/kg/d) for 10 days. From day 11, MLS groups were administrated orally MLS at 0.6, 3, and 15 g/kg once a day for 14 days, respectively. After the last administration, sweating was induced in all rats via s.c. pilocarpine (25 mg/kg), the right hind foot of rats was stained, and sweat point numbers were observed. Rat serum was collected to detect IL-2, IL-6, IFN-γ, and TNF-α. Rat plasma was collected for endogenous metabolite analysis via UPLC-QE-Focus-MS. RESULTS: Rats treated with MLS presented a significant decrease in sweat point numbers (13.5%), increase in body weight (13.2%), and promotion in the balance of Th1/Th2 cytokine ratio via increasing IL-2 (38.3%), IFN-γ (20.1%), and TNF-α (22.0%) and decreasing IL-6 (24.7%) compared with the model group (p < 0.05). Plasma metabolomics disclosed 15 potential biomarkers related to model rats, of which two could be significantly reversed by MLS (p < 0.05). The involved pathways were pantothenate and CoA biosynthesis, and porphyrin metabolism. CONCLUSIONS: MLS demonstrated a good antiperspirant effect and metabolism improvement. These findings inspire more clinical study validation on immune improvement and antiperspirant effect.


Asunto(s)
Antitranspirantes , Hiperhidrosis , Medicina Tradicional China , Animales , Antitranspirantes/farmacología , Hiperhidrosis/tratamiento farmacológico , Interleucina-2 , Interleucina-6 , Metabolómica , Ratas , Factor de Necrosis Tumoral alfa
18.
Biosci Rep ; 42(4)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35352794

RESUMEN

Endoplasmic reticulum (ER) stress contribute to inflammatory bowel disease (IBD). However, the mechanistic link between toll-like receptor 4 (TLR4) and ER stress in IBD remains elusive. This study aimed to investigate the mechanism by which ER stress and TLR4 promote inflammation in IBD. IBD mouse model was established by the induction of TNBS, and Grp78 and TLR4 in intestine tissues were detected by immunohistochemistry. THP-1 cells were treated with lipopolysaccharides (LPS), ER stress inducer or inhibitor tauroursodeoxycholic acid (TUDCA), or p38 MAPK inhibitor. The activation of MAPK signaling was detected by Western blot, and the production and secretion of inflammatory factors were detected by PCR and ELISA. We found that the expression levels of TLR4 and GRP78 were significantly higher in the intestine of IBD model mice compared with control mice but were significantly lower in the intestine of IBD model mice treated with ER stress inhibitor TUDCA. ER stress inducer significantly increased while ER stress inhibitor TUDCA significantly decreased the expression and secretion of TNF-α, IL-1ß and IL-8 in THP-1 cells treated by LPS. Only p38 MAPK signaling was activated in THP-1 cells treated by ER stress inducer. Furthermore, p38 inhibitor SB203580 inhibited the production and secretion of TNF-α, IL-1ß and IL-8 in THP-1 cells treated with LPS. In conclusion, TLR4 promotes ER stress induced inflammation in IBD, and the effects may be mediated by p38 MAPK signaling. TLR4 and p38 MAPK signaling are novel therapeutic targets for IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/genética , Interleucina-8 , Lipopolisacáridos/efectos adversos , Ratones , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
CNS Neurosci Ther ; 28(6): 953-963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322553

RESUMEN

AIMS: Inflammatory processes induced by leukocytes are crucially involved in the pathophysiology of acute ischemic stroke. This study aimed to elucidate the inflammatory mechanism of long non-coding RNA (lncRNA) H19-mediated regulation of C1q and tumor necrosis factor 6 (C1QTNF6) by sponging miR-29b in leukocytes during ischemic stroke. METHODS: H19 and miR-29b expression in leukocytes of patients with ischemic stroke and rats with middle cerebral artery occlusion were measured by real-time polymerase chain reaction. H19 siRNA and miR-29b antagomir were used to knock down H19 and miR-29b, respectively. We performed in vivo and in vitro experiments to determine the impact of H19 and miR-29b on C1QTNF6 expression in leukocytes after ischemic injury. RESULTS: H19 and C1QTNF6 upregulation, as well as miR-29b downregulation, was detected in leukocytes of patients with stroke. Moreover, miR-29b could bind C1QTNF6 mRNA and repress its expression, while H19 could sponge miR-29b to maintain C1QTNF6 expression. C1QTNF6 overexpression promoted the release of IL-1ß and TNF-α in leukocytes, further exacerbated blood-brain barrier disruption, and aggravated the cerebral ischemic injury. CONCLUSIONS: Our findings confirm that H19 promotes leukocyte inflammation by targeting the miR-29b/C1QTNF6 axis in cerebral ischemic injury.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , ARN Largo no Codificante , Animales , Colágeno , Humanos , Inflamación/genética , Inflamación/metabolismo , Leucocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Factor de Necrosis Tumoral alfa
20.
Adv Appl Microbiol ; 117: 1-34, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34742365

RESUMEN

Carbon one industry flux gas generated from fossil fuels, various industrial and domestic waste, as well as lignocellulosic biomass provides an innovative raw material to lead the sustainable development. Through the chemical and biological processing, the gas mixture composed of CO, CO2, and H2, also termed as syngas, is converted to biofuels and high-value chemicals. Here, the syngas fermentation process is elaborated to provide an overview. Sources of syngas are summarized and the influences of impurities on biological fermentation are exhibited. Acetogens and carboxydotrophs are the two main clusters of syngas utilizing microorganisms, their essential characters are presented, especially the energy metabolic scheme with CO, CO2, and H2. Synthetic biology techniques and microcompartment regulation are further discussed and proposed to create a high-efficiency cell factory. Moreover, the influencing factors in fermentation and products in carboxylic acids, alcohols, and others such like polyhydroxyalkanoate and poly-3-hydroxybutyrate are addressed. Biological fermentation from carbon one industry flux gas is a promising alternative, the latest scientific advances are expatiated hoping to inspire more creative transformation.


Asunto(s)
Biocombustibles , Ciclo del Carbono , Bacterias/genética , Carbono , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA