Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
J Am Chem Soc ; 139(49): 17811-17823, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29148741

RESUMEN

Functionalization of nanoparticles with biopolymers has yielded a wide range of structured and responsive hybrid materials. DNA provides the ability to program length and recognition using complementary oligonucleotide sequences. Nature more often leverages the versatility of proteins, however, where structure, assembly, and recognition are more subtle to engineer. Herein, a protein was computationally designed to present multiple Zn2+ coordination sites and cooperatively self-associate to form an antiparallel helical homodimer. Each subunit was unstructured in the absence of Zn2+ or when the cation was sequestered with a chelating agent. When bound to the surface of gold nanoparticles via cysteine, the protein provided a reversible molecular linkage between particles. Nanoparticle association and changes in interparticle separation were monitored by redshifts in the surface plasmon resonance (SPR) band and by transmission electron microscopy (TEM). Titrations with Zn2+ revealed sigmoidal transitions at submicromolar concentrations. The metal-ion concentration required to trigger association varied with the loading of the proteins on the nanoparticles, the solution ionic strength, and the cation employed. Specifying the number of helical (heptad) repeat units conferred control over protein length and nanoparticle separation. Two different length proteins were designed via extension of the helical structure. TEM and extinction measurements revealed distributions of nanoparticle separations consistent with the expected protein structures. Nanoparticle association, interparticle separation, and SPR properties can be tuned using computationally designed proteins, where protein structure, folding, length, and response to molecular species such as Zn2+ can be engineered.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Proteínas/química , Zinc/química , Cisteína/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Concentración Osmolar , Proteínas/ultraestructura , Resonancia por Plasmón de Superficie
2.
J Phys Chem B ; 111(30): 9036-44, 2007 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-17602581

RESUMEN

We have computed pKa shifts for carboxylic residues of the serine protease inhibitor turkey ovomucoid third domain (residues Asp7, Glu10, Glu19, Asp27, and Glu43). Both polarizable and nonpolarizable empirical force fields were employed. Hydration was represented by the surface generalized Born and Poisson-Boltzmann continuum model. The calculations were carried out in the most physically straightforward fashion, by directly comparing energies of the protonated and deprotonated protein forms, without any additional parameter fitting or adjustment. Our studies have demonstrated that (i) the Poisson-Boltzmann solvation model is more than adequate in reproducing pKa shifts, most likely due to its intrinsically many-body formalism; (ii) explicit treatment of electrostatic polarization included in our polarizable force field (PFF) calculations appears to be crucial in reproducing the acidity constant shifts. The average error of the PFF results was found to be as low as 0.58 pKa units, with the best fixed-charges average deviation being 3.28 units. Therefore, the pKa shifts phenomena and the governing electrostatics are clearly many-body controlled in their intrinsic nature; (iii) our results confirm previously reported conclusions that pKa shifts for protein residues are controlled by the immediate environment of the residues in question, as opposed to long-range interactions in proteins. We are confident that our confirmation of the importance of explicit inclusion of polarization in empirical force fields for protein studies will be useful far beyond the immediate goal of accurate calculation of acidity constants.


Asunto(s)
Ácidos Carboxílicos/química , Inhibidor de Tripsina Pancreática de Kazal/química , Algoritmos , Animales , Concentración de Iones de Hidrógeno , Estructura Terciaria de Proteína , Electricidad Estática , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA