Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BJR Open ; 5(1): 20230012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035769

RESUMEN

Objectives: Proton therapy has a theoretical dosimetric advantage due to the Bragg peak, but the linear energy transfer (LET), and therefore the relative biological effectiveness (RBE), increase at the end of range. For patients with Hodgkin lymphoma, the distal edge of beam is often located within or close to the heart, where elevated RBE would be of potential concern. The purpose of this study was to investigate the impact of RBE and the choice of beam arrangement for adolescent patients with mediastinal Hodgkin lymphoma. Methods: For three previously treated adolescent patients, proton plans with 1-3 fields were created to a prescribed dose of 19.8 Gy (RBE) in 11 fractions (Varian Eclipse v13.7), assuming an RBE of 1.1. Plans were recalculated using Monte-Carlo (Geant4 v10.3.3/Gate v8.1) to calculate dose-averaged LET. Variable RBE-weighted dose was calculated using the McNamara model, assuming an α/ß ratio of 2 Gy for organs-at-risk. Results: Although the LET decreased as the number of fields increased, the difference in RBE-weighted dose (Δdose) to organs-at-risk did not consistently decrease. Δdose values varied by patient and organ and were mostly of the order of 0-3 Gy (RBE), with a worst-case of 4.75 Gy (RBE) in near-maximum dose to the left atrium for one plan. Conclusions: RBE-weighted doses to organs-at-risk are sensitive to the choice of RBE model, which is of particular concern for the heart. Advances in knowledge: There is a need to remain cautious when evaluating proton plans for Hodgkin lymphoma, especially when near-maximum doses to organs-at-risk are considered.

2.
Int J Radiat Oncol Biol Phys ; 116(4): 916-926, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36642109

RESUMEN

PURPOSE: In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. METHODS AND MATERIALS: We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. RESULTS: Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. CONCLUSIONS: These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.


Asunto(s)
Terapia de Protones , Protones , Humanos , Efectividad Biológica Relativa , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Transferencia Lineal de Energía , Método de Montecarlo
3.
Commun Biol ; 5(1): 700, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835982

RESUMEN

Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting.


Asunto(s)
Reparación del ADN
4.
Br J Radiol ; 95(1133): 20211175, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35220723

RESUMEN

OBJECTIVES: High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS: Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS: The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS: The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE: Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.


Asunto(s)
Neoplasias Primarias Secundarias , Terapia de Protones , Terapia por Rayos X , Humanos , Neoplasias Primarias Secundarias/radioterapia
5.
Biomed Phys Eng Express ; 8(1)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34874308

RESUMEN

The strongin vitroevidence that proton Relative Biological Effectiveness (RBE) varies with Linear Energy Transfer (LET) has led to an interest in applying LET within treatment planning. However, there is a lack of consensus on LET definition, Monte Carlo (MC) parameters or clinical methodology. This work aims to investigate how common variations of LET definition may affect potential clinical applications. MC simulations (GATE/GEANT4) were used to calculate absorbed dose and different types of LET for a simple Spread Out Bragg Peak (SOBP) and for four clinical PBT plans covering a range of tumour sites. Variations in the following LET calculation methods were considered: (i) averaging (dose-averaged LET (LETd) & track-averaged LET); (ii) scoring (LETdto water, to medium and to mass density); (iii) particle inclusion (LETdto all protons, to primary protons and to particles); (iv) MC settings (hit type and Maximum Step Size (MSS)). LET distributions were compared using: qualitative comparison, LET Volume Histograms (LVHs), single value criteria (maximum and mean values) and optimised LET-weighted dose models. Substantial differences were found between LET values in averaging, scoring and particle type. These differences depended on the methodology, but for one patient a difference of ∼100% was observed between the maximum LETdfor all particles and maximum LETdfor all protons within the brainstem in the high isodose region (4 keVµm-1and 8 keVµm-1respectively). An RBE model using LETdincluding heavier ions was found to predict substantially different LET-weighted dose compared to those using other LET definitions. In conclusion, the selection of LET definition may affect the results of clinical metrics considered in treatment planning and the results of an RBE model. The authors' advocate for the scoring of dose-averaged LET to water for primary and secondary protons using a random hit type and automated MSS.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones , Humanos , Método de Montecarlo , Terapia de Protones/métodos , Protones , Efectividad Biológica Relativa
6.
PLoS Comput Biol ; 16(12): e1008476, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326415

RESUMEN

Developments in the genome organisation field has resulted in the recent methodology to infer spatial conformations of the genome directly from experimentally measured genome contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromosomal arrangements. Chromosomal intermingling is an important driver for radiation-induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of cancer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time, we leverage these methods of inferring genome organisation and couple them to nano-dosimetric radiation track structure modelling to predict quantities and distribution of DNA damage within cell-type specific geometries. These nano-dosimetric simulations are highly dependent on geometry and are benefited from the inclusion of experimentally driven chromosome conformations. We show how the changes in Hi-C contract maps impact the inferred geometries resulting in significant differences in chromosomal intermingling. We demonstrate how these differences propagate through to significant changes in the distribution of DNA damage throughout the cell nucleus, suggesting implications for DNA repair fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for the chromosomes between the cell-types are a plausible factor leading to changes in cellular radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and show that this greatly impacts the distribution of DNA damage. This should be considered when comparing in vitro results to in vivo systems. The effect may be especially important when attempting to translate radiosensitivity measurements at the experimental in vitro level to the patient or human level.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/efectos de la radiación , Genoma , Neoplasias/tratamiento farmacológico , Cromosomas/efectos de la radiación , Análisis por Conglomerados , Simulación por Computador , Humanos , Tolerancia a Radiación
7.
Br J Radiol ; 93(1114): 20200228, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726141

RESUMEN

OBJECTIVES: Software re-calculation of proton pencil beam scanning plans provides a method of verifying treatment planning system (TPS) dose calculations prior to patient treatment. This study describes the implementation of AutoMC, a Geant4 v10.3.3/Gate v8.1 (Gate-RTion v1.0)-based Monte-Carlo (MC) system for automated plan re-calculation, and presents verification results for 153 patients (730 fields) planned within year one of the proton service at The Christie NHS Foundation Trust. METHODS: A MC beam model for a Varian ProBeam delivery system with four range-shifter options (none, 2 cm, 3 cm, 5 cm) was derived from beam commissioning data and implemented in AutoMC. MC and TPS (Varian Eclipse v13.7) calculations of 730 fields in solid-water were compared to physical plan-specific quality assurance (PSQA) measurements acquired using a PTW Octavius 1500XDR array and PTW 31021 Semiflex 3D ion chamber. RESULTS: TPS and MC showed good agreement with array measurements, evaluated using γ analyses at 3%, 3 mm with a 10% lower dose threshold:>94% of fields calculated by the TPS and >99% of fields calculated by MC had γ ≤ 1 for>95% of measurement points within the plane. TPS and MC also showed good agreement with chamber measurements of absolute dose, with systematic differences of <1.5% for all range-shifter options. CONCLUSIONS: Reliable independent verification of the TPS dose calculation is a valuable complement to physical PSQA and may facilitate reduction of the physical PSQA workload alongside a thorough delivery system quality assurance programme. ADVANCES IN KNOWLEDGE: A Gate/Geant4-based MC system is thoroughly validated against an extensive physical PSQA dataset for 730 clinical fields, showing that clinical implementation of MC for PSQA is feasible.


Asunto(s)
Terapia de Protones/métodos , Garantía de la Calidad de Atención de Salud , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Calibración , Inglaterra , Humanos , Método de Montecarlo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
8.
Br J Radiol ; 93(1107): 20190919, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32003576

RESUMEN

OBJECTIVE: Monte Carlo (MC) simulations substantially improve the accuracy of predicted doses. This study aims to determine and quantify the uncertainties of setting up such a MC system. METHODS: Doses simulated with two Geant4-based MC calculation codes, but independently tuned to the same beam data, have been compared. Different methods of MC modelling of a pre-absorber have been employed, either modifying the beam source parameters (descriptive) or adding the pre-absorber as a physical component (physical). RESULTS: After the independent beam modelling of both systems in water (resulting in excellent range agreement) range differences of up to 3.6/4.8 mm (1.5% of total range) in bone/brain-like tissues were found, which resulted from the use of different mean water ionisation potentials during the energy tuning process. When repeating using a common definition of water, ranges in bone/brain agreed within 0.1 mm and gamma-analysis (global 1%,1mm) showed excellent agreement (>93%) for all patient fields. However, due to a lack of modelling of proton fluence loss in the descriptive pre-absorber, differences of 7% in absolute dose between the pre-absorber definitions were found. CONCLUSION: This study quantifies the influence of using different water ionisation potentials during the MC beam modelling process. Furthermore, when using a descriptive pre-absorber model, additional Faraday cup or ionisation chamber measurements with pre-absorber are necessary. ADVANCES IN KNOWLEDGE: This is the first study quantifying the uncertainties caused by the MC beam modelling process for proton pencil beam scanning, and a more detailed beam modelling process for MC simulations is proposed to minimise the influence of critical parameters.


Asunto(s)
Método de Montecarlo , Terapia de Protones/métodos , Incertidumbre , Absorción de Radiación , Aire , Huesos/efectos de la radiación , Encéfalo/efectos de la radiación , Humanos , Hipofraccionamiento de la Dosis de Radiación , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Agua
9.
Br J Radiol ; 93(1107): 20190873, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31860337

RESUMEN

The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.


Asunto(s)
Instituciones Oncológicas/estadística & datos numéricos , Terapia de Protones/estadística & datos numéricos , Medicina Estatal/estadística & datos numéricos , Adolescente , Adulto , Instituciones Oncológicas/provisión & distribución , Creación de Capacidad , Niño , Ensayos Clínicos como Asunto , Terapia Combinada/métodos , Daño del ADN , Inglaterra , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Evaluación de Programas y Proyectos de Salud , Terapia de Protones/efectos adversos , Oncología por Radiación/educación , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa , Investigación , Investigación Biomédica Traslacional , Resultado del Tratamiento , Incertidumbre , Adulto Joven
10.
Phys Med Biol ; 63(12): 125020, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29790861

RESUMEN

The MR-Linac will provide excellent soft tissue contrast for on-treatment imaging. It is well known that the electron return effect (ERE) results in areas of increased and decreased dose at air/tissue boundaries, which can be compensated for in plan optimisation. However, anatomical changes may affect the quality of this compensation. In this paper we aim to quantify the interaction of anatomical changes with ERE in head and neck (H&N) cancer patients. Twenty patients treated with either 66 Gy or 60 Gy in 30 fractions were selected. Ten had significant weight-loss during treatment requiring repeat CT (rCT) and ten had PTVs close to the sinus cavity. Plans were optimised using Monaco to meet the departmental dose constraints and copied to the rCT and re-calculated. For the sinus patients, we optimised plans with full and empty sinus at both 0 T and 1.5 T. The effect of the opposite filling state was next evaluated. No clinically relevant difference between the doses in the PTV and OARs were observed related to weight-loss in 0 T or 1.5 T fields. Variable sinus filling caused greater dosimetric differences near the walls of the sinus for plans optimised with a full cavity in 1.5 T, indicating that optimising with an empty sinus makes the plan more robust to changes in filling. These findings indicate that current off-line strategies for adaptive planning for H&N patients are also valid on an MR-linac, if care is taken with sinus filling.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Pérdida de Peso , Adulto , Anciano , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Radiometría/métodos , Dosificación Radioterapéutica
11.
Nanoscale ; 9(46): 18413-18422, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29148554

RESUMEN

Gold nanoparticles have been proven as potential radiosensitizer when combined with protons. Initially the radiosensitization effect was attributed to the physical interactions of radiation with the gold and the production of secondary electrons that induce DNA damage. However, emerging data challenge this hypothesis, supporting the existence of alternative or supplementary radiosensitization mechanisms. In this work we incorporate a realistic cell model with detailed DNA geometry and a realistic gold nanoparticle biodistribution based on experimental data. The DNA single and double strand breaks, and damage complexity are counted under various scenarios of different gold nanoparticle size, biodistribution and concentration, and proton energy. The locality of the effect, i.e. the existence of higher damage at a location close to the gold distribution, is also addressed by investigating the DNA damage at a chromosomal territory. In all the cases we do not observe any significant increase in the single/double strand break yield or damage complexity in the presence of gold nanoparticles under proton irradiation; nor there is a locality to the effect. Our results show for the first time that the physical interactions of protons with the gold nanoparticles should not be considered directly responsible for the observed radiosensitization effect. The model used only accounts for DNA damage from direct interactions, whilst considering the indirect effect, and it is possible the radiosensitization effect to be due to other physical effects, although we consider that possibility unlikely. Our conclusion suggests that other mechanisms might have greater contribution to the radiosensitization effect and further investigation should be conducted.


Asunto(s)
Daño del ADN , Oro , Nanopartículas del Metal , Terapia de Protones , Fármacos Sensibilizantes a Radiaciones/química , Modelos Teóricos , Método de Montecarlo , Distribución Tisular
12.
Phys Med Biol ; 62(20): 8178-8196, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28901947

RESUMEN

Proton plans are subject to a number of uncertainties which must be accounted for to ensure that they are delivered safely. Misalignment resulting from residual errors in daily patient positioning can result in both a displacement and distortion of dose distributions. This can be particularly important for intensity modulated proton therapy treatments where the accurate alignment of highly modulated fields may be required to deliver the intended treatment. A number of methods to generate plans that are robust to these uncertainties exist. These include robust optimisation approaches which account for the effect of uncertainties on the dose distribution within the optimisation process. However, robustness to uncertainty comes at the cost of plan quality. For this reason, it is important that the uncertainties considered are realistic. Existing approaches to robust optimisation have neglected the role of fractionated treatment deliveries in reducing the uncertainties that result from random setup errors. Here, a method of robust optimisation which accounts for this effect is presented and is evaluated using a 2D planning environment. The optimisation algorithm considers the dose in the estimated upper and lower bounds of the dose distribution under the effect of setup and range errors. A comparison with plans robustly optimised without consideration of the effect of fractionation and conventionally optimised plans is presented. Fractionation incorporated robust optimisation demonstrates a reduced sensitivity to uncertainty compared to conventionally optimised plans and a reduced integral dose compared to robustly optimised plans.


Asunto(s)
Algoritmos , Fraccionamiento de la Dosis de Radiación , Posicionamiento del Paciente , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/normas , Errores de Configuración en Radioterapia/prevención & control , Radioterapia de Intensidad Modulada/métodos , Humanos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Incertidumbre
13.
Phys Med Biol ; 61(24): 8577-8586, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27880733

RESUMEN

Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated-mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Garantía de la Calidad de Atención de Salud/normas , Control de Calidad , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Estudios de Cohortes , Neoplasias de Cabeza y Cuello/patología , Humanos , Curva ROC , Flujo de Trabajo
14.
J Appl Clin Med Phys ; 17(2): 41-49, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-27074471

RESUMEN

Contouring structures in the head and neck is time-consuming, and automatic seg-mentation is an important part of an adaptive radiotherapy workflow. Geometric accuracy of automatic segmentation algorithms has been widely reported, but there is no consensus as to which metrics provide clinically meaningful results. This study investigated whether geometric accuracy (as quantified by several commonly used metrics) was associated with dosimetric differences for the parotid and larynx, comparing automatically generated contours against manually drawn ground truth contours. This enabled the suitability of different commonly used metrics to be assessed for measuring automatic segmentation accuracy of the parotid and larynx. Parotid and larynx structures for 10 head and neck patients were outlined by five clinicians to create ground truth structures. An automatic segmentation algorithm was used to create automatically generated normal structures, which were then used to create volumetric-modulated arc therapy plans. The mean doses to the automatically generated structures were compared with those of the corresponding ground truth structures, and the relative difference in mean dose was calculated for each structure. It was found that this difference did not correlate with the geometric accuracy provided by several metrics, notably the Dice similarity coefficient, which is a commonly used measure of spatial overlap. Surface-based metrics provided stronger correlation and are, therefore, more suitable for assessing automatic seg-mentation of the parotid and larynx.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Laringe/diagnóstico por imagen , Glándula Parótida/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Laringe/anatomía & histología , Glándula Parótida/anatomía & histología , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada
15.
Med Phys ; 43(3): 1462-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26936730

RESUMEN

PURPOSE: The lateral edge of a proton therapy beam is commonly used to achieve conformality to the treatment volume where critical structures reside close to the target. However, when treating shallow depths, the lateral edge of a pencil beam scanning (PBS) system may be broader than that of a double scattered (DS) system. Use of a range-shifter to degrade the beam and allow treatment of very shallow depths further blurs the lateral edge. The authors investigate the potential use of a collimator with a PBS system for delivery of 3D uniform dose-volumes to a water-tank phantom, identifying the key factors controlling the width of the lateral edge. METHODS: The geant4 application for tomographic emission (gate) Monte Carlo (MC) environment was used, following validation against previously published data. Key parameters for PBS beams were investigated to assess their impact on the lateral edge of both monoenergetic beams and uniform dose-volumes. These parameters included nozzle-to-surface distance (NSD), vacuum window-to-surface distance (VSD), use of a range-shifter, and spot optimization parameters. RESULTS: The lateral edge of an uncollimated PBS beam is particularly sensitive to VSD and NSD. While use of a range-shifter blurs the lateral edge, collimation allows the edge to be sharpened to between 2 and 4 mm depending on the depth of the target. Optimization of the spot weightings alone can provide a penumbral width close to that of a single spot, but also leads to poorer uniformity near the edge of the target volume. CONCLUSIONS: Collimation of PBS beams should be considered for superficial targets particularly for beams delivered through a range-shifter, since the resultant sharpening of the lateral edge will allow improved sparing of adjacent normal tissues. Further work is needed to develop collimators which are integrated into both nozzle designs and planning system optimization algorithms.


Asunto(s)
Método de Montecarlo , Terapia de Protones/métodos , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
16.
Phys Med Biol ; 61(1): 413-29, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26675133

RESUMEN

To ensure the safe delivery of proton therapy treatments it is important to evaluate the effect of potential uncertainties, such as patient mispositioning, on the intended dose distribution. However, it can be expected that the uncertainty resulting from patient positioning is reduced in a fractionated treatment due to the convergence of random variables with the delivery of repeated treatments. This is neglected by current approaches to robustness analysis resulting in an overly conservative assessment of the robustness which can lead to sub-optimal plans. Here, a fast method of accounting for this reduced uncertainty is presented. An estimated bound to the error in the dose distribution resulting from setup uncertainty over a specified number of fractions is calculated by considering the distribution of values for each voxel across 14 initial error scenarios. The bound on the error in a given voxel is estimated using a 99.9% confidence limit assuming a convergence towards a normal distribution in line with the central limit theorem, and a correction of [Formula: see text] accounting for the reduction in the standard deviation over n fractions. The proposed method was validated in 5 patients by comparison to Monte Carlo simulations of 300 treatment courses. A voxelwise and volumetric analysis of the estimated and simulated bounds to the uncertainty in the dose distribution demonstrate that the proposed technique can be used to assess proton plan robustness more accurately allowing for less conservative treatment plans.


Asunto(s)
Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia/prevención & control , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Método de Montecarlo , Posicionamiento del Paciente , Radioterapia de Intensidad Modulada/métodos
17.
Radiother Oncol ; 109(3): 377-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24094628

RESUMEN

PURPOSE: To investigate the use of a software-based pre-treatment QA system for VMAT, which incorporates realistic linac motion during delivery. METHODS: A beam model was produced using the GATE platform for GEANT4 Monte Carlo dose calculations. Initially validated against static measurements, the model was then integrated with a VMAT delivery emulator, which reads plan files and generates a set of dynamic delivery instructions analogous to the linac control system. Monte Carlo simulations were compared to measurements on dosimetric phantoms for prostate and head and neck VMAT plans. Comparisons were made between calculations using fixed control points, and simulations of continuous motion utilising the emulator. For routine use, the model was incorporated into an automated pre-treatment QA system. RESULTS: The model showed better agreement with measurements when incorporating linac motion: mean gamma pass (Γ<1) over 5 prostate plans was 100.0% at 3%/3mm and 97.4% at 2%/2mm when compared to measurement. For the head and neck plans, delivered to the anatomical phantom, gamma passes were 99.4% at 4%/4mm and 94.94% at 3%/3mm. For example simulations within patient CT data, gamma passes were observed which are within our centre's tolerance for pre-treatment QA. CONCLUSIONS: Through comparison to phantom measurements, it was found that the incorporation of a realistic linac motion improves the accuracy of the model compared to the simulation of fixed control points. The ability to accurately calculate dose as a second check of the planning system, and determine realistic delivery characteristics, may allow for the reduction of machine-based pre-treatment plan QA for VMAT.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Método de Montecarlo , Aceleradores de Partículas , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Simulación por Computador , Humanos , Masculino , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Radiometría/métodos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
18.
Radiother Oncol ; 93(3): 553-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19897267

RESUMEN

BACKGROUND AND PURPOSE: High density materials create severe artefacts in the computed tomography (CT) scans used for radiotherapy dose calculations. Increased use of intensity-modulated radiotherapy (IMRT) to treat oropharyngeal cancers raises concerns over the accuracy of the resulting dose calculation. This work quantifies their impact and evaluates a simple corrective technique. MATERIALS AND METHODS: Fifteen oropharyngeal patients with severe artefacts were retrospectively planned with IMRT using two different CT/density look-up tables. Each plan was recalculated using a corrected CT dataset to evaluate the dose distribution delivered to the patient. Plan quality in the absence of dental artefacts was similarly assessed. A range of dosimetric and radiobiological parameters were compared pre- and post-correction. RESULTS: Plans using a standard CT/density look-up table (density 1.8 g/cm(3)) revealed inconsistent inter-patient errors, mostly within clinical acceptance, although potentially significantly reducing target coverage for individual patients. Using an extended CT/density look-up table (density 10.0 g/cm(3)) greatly reduced the errors for 13/15 patients. In 2/15 patients with residual errors the CTV extended into the severely affected region and could be corrected by applying a simple manual correction. CONCLUSIONS: Use of an extended CT/density look-up table together with a simple manual bulk density correction reduces the impact of dental artefacts on head and neck IMRT planning to acceptable levels.


Asunto(s)
Artefactos , Amalgama Dental , Neoplasias Orofaríngeas/diagnóstico por imagen , Neoplasias Orofaríngeas/radioterapia , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Tomografía Computarizada por Rayos X , Humanos , Dosificación Radioterapéutica
19.
Med Dosim ; 34(2): 99-106, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19410137

RESUMEN

Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within +/- 3% in dose over the range of sample points. For some points in high-dose gradients, submillimeter errors in position can lead to errors > 3%. The precision of the delivery system was demonstrated to be within the experimental noise of the detector system of 1.5% (1 SD).


Asunto(s)
Diagnóstico por Imagen/métodos , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/radioterapia , Interpretación de Imagen Asistida por Computador/métodos , Radiometría/métodos , Radioterapia Asistida por Computador/métodos , Diagnóstico por Imagen/instrumentación , Humanos , Fantasmas de Imagen , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Int J Radiat Oncol Biol Phys ; 72(2): 617-22, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18793966

RESUMEN

PURPOSE: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. METHODS AND MATERIALS: A total of 13 oropharyngeal cancer whole-field IMRT plans were planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. RESULTS: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. CONCLUSION: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.


Asunto(s)
Trastornos de Deglución/prevención & control , Laringe/efectos de la radiación , Neoplasias Orofaríngeas/radioterapia , Traumatismos por Radiación/prevención & control , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Neoplasias Orofaríngeas/patología , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA