Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Immunol ; 24(6): 941-954, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095378

RESUMEN

The range of vaccines developed against severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) provides a unique opportunity to study immunization across different platforms. In a single-center cohort, we analyzed the humoral and cellular immune compartments following five coronavirus disease 2019 (COVID-19) vaccines spanning three technologies (adenoviral, mRNA and inactivated virus) administered in 16 combinations. For adenoviral and inactivated-virus vaccines, heterologous combinations were generally more immunogenic compared to homologous regimens. The mRNA vaccine as the second dose resulted in the strongest antibody response and induced the highest frequency of spike-binding memory B cells irrespective of the priming vaccine. Priming with the inactivated-virus vaccine increased the SARS-CoV-2-specific T cell response, whereas boosting did not. Distinct immune signatures were elicited by the different vaccine combinations, demonstrating that the immune response is shaped by the type of vaccines applied and the order in which they are delivered. These data provide a framework for improving future vaccine strategies against pathogens and cancer.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Linfocitos T , Inmunogenicidad Vacunal
2.
Front Immunol ; 13: 941667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990685

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most frequent types of oral cancer in developing countries and its burden correlates with exposure to tobacco and excessive alcohol consumption. Toll like receptors (TLRs) are major sensors of inflammatory stimuli, from both microbial and sterile causes and as such, they have been related to tumor progression and metastasis. Here, we evaluated the expression of TLR2, 4 and 9 as well as CD3+, CD8+ and Granzyme B+ cell infiltration by immunohistochemistry in oral samples of 30 patients with OSCC, classified according to their consumption of alcohol. Our findings indicate that there is a significant association between heavy alcohol consumption and tumors with higher expression levels of TLR9. Moreover, patients with TLR9high tumors, as well as those who indicated high consumption of alcohol exhibited a diminished overall survival. TCGA data analysis indicated that TLR9high tumors express a significant increase in some genes related with the oral cavity itself, inflammation and tumor promotion. Our analysis of tumor infiltrating leukocytes demonstrated that the major differences perceived in heavy alcohol consumers was the location of CD8+ T cells infiltrating the tumor, which showed lower numbers intratumorally. Our data suggest the existence of a pathogenic loop that involves alcohol consumption, high TLR9 expression and the immunophenotype, which might have a profound impact on the progression of the disease.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/metabolismo , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Receptor Toll-Like 9
4.
Breast Cancer Res ; 23(1): 40, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766090

RESUMEN

BACKGROUND: Characterization of breast cancer (BC) through the determination of conventional markers such as ER, PR, HER2, and Ki67 has been useful as a predictive and therapeutic tool. Also, assessment of tumor-infiltrating lymphocytes has been proposed as an important prognostic aspect to be considered in certain BC subtypes. However, there is still a need to identify additional biomarkers that could add precision in distinguishing therapeutic response of individual patients. To this end, we focused in the expression of interferon regulatory factor 8 (IRF8) in BC cells. IRF8 is a transcription factor which plays a well-determined role in myeloid cells and that seems to have multiple antitumoral roles: it has tumor suppressor functions; it acts downstream IFN/STAT1, required for the success of some therapeutic regimes, and its expression in neoplastic cells seems to depend on a cross talk between the immune contexture and the tumor cells. The goal of the present study was to examine the relationship between IRF8 with the therapeutic response and the immune contexture in BC, since its clinical significance in this type of cancer has not been thoroughly addressed. METHODS: We identified the relationship between IRF8 expression and the clinical outcome of BC patients and validated IRF8 as predictive biomarker by using public databases and then performed in silico analysis. To correlate the expression of IRF8 with the immune infiltrate in BC samples, we performed quantitative multiplex immunohistochemistry. RESULTS: IRF8 expression can precisely predict the complete pathological response to monoclonal antibody therapy or to select combinations of chemotherapy such as FAC (fluorouracil, adriamycin, and cytoxan) in ER-negative BC subtypes. Analysis of immune cell infiltration indicates there is a strong correlation between activated and effector CD8+ T cell infiltration and tumoral IRF8 expression. CONCLUSIONS: We propose IRF8 expression as a potent biomarker not only for prognosis, but also for predicting therapy response in ER-negative BC phenotypes. Its expression in neoplastic cells also correlates with CD8+ T cell activation and infiltration. Therefore, our results justify new efforts towards understanding mechanisms regulating IRF8 expression and how they can be therapeutically manipulated.


Asunto(s)
Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos/patología , Factores Reguladores del Interferón/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Receptores de Estrógenos/deficiencia , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Pronóstico , Resultado del Tratamiento
5.
Front Immunol ; 10: 2614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781113

RESUMEN

The immune response against cancer generated by type-I-interferons (IFN-1) has recently been described. Exogenous and endogenous IFN-α/ß have an important role in immune surveillance and control of tumor development. In addition, IFN-1s have recently emerged as novel DAMPs for the consecutive events connecting innate and adaptive immunity, and they also have been postulated as an essential requirement for induction of immunogenic cell death (ICD). In this context, photodynamic therapy (PDT) has been previously linked to the ICD. PDT consists in the administration of a photosensitizer (PS) and its activation by irradiation of the affected area with visible light producing excitation of the PS. This leads to the local generation of harmful reactive oxygen species (ROS) with limited or no systemic defects. In the current work, Me-ALA inducing PpIX (endogenous PS) was administrated to B16-OVA melanoma cells. PpIX preferentially localized in the endoplasmic reticulum (ER). Subsequent PpIX activation with visible light significantly induced oxidative ER-stress mediated-apoptotic cell death. Under these conditions, the present study was the first to report the in vitro upregulation of IFN-1 expression in response to photodynamic treatment in melanoma. This IFN-α/ß transcripts upregulation was concurrent with IRF-3 phosphorylation at levels that efficiently activated STAT1 and increased ligand receptor (cGAS) and ISG (CXCL10, MX1, ISG15) expression. The IFN-1 pathway has been identified as a critical molecular pathway for the antitumor host immune response, more specifically for the dendritic cells (DCs) functions. In this sense, PDT-treated melanoma cells induced IFN-1-dependent phenotypic maturation of monocyte-derived dendritic cells (DCs) by enhancing co-stimulatory signals (CD80, MHC-II) and tumor-directed chemotaxis. Collectively, our findings showed a new effect of PDT-treated cancer cells by modulating the IFN-1 pathway and its impact on the activation of DCs, emphasizing the potential relevance of PDT in adoptive immunotherapy protocols.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Melanoma Experimental/tratamiento farmacológico , Fotoquimioterapia , Animales , Apoptosis , Línea Celular Tumoral , Luz , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/uso terapéutico
6.
Front Immunol ; 10: 503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949170

RESUMEN

An important challenge in cancer immunotherapy is to expand the number of patients that benefit from immune checkpoint inhibitors (CI), a fact that has been related to the pre-existence of an efficient anti-tumor immune response. Different strategies are being proposed to promote tumor immunity and to be used in combined therapies with CI. Recently, we reported that intratumoral administration of naked poly A:U, a dsRNA mimetic empirically used in early clinical trials with some success, delays tumor growth and prolongs mice survival in several murine cancer models. Here, we show that CD103+ cDC1 and, to a much lesser extent CD11b+ cDC2, are the only populations expressing TLR3 at the tumor site, and consequently could be potential targets of poly A:U. Upon poly A:U administration these cells become activated and elicit profound changes in the composition of the tumor immune infiltrate, switching the immune suppressive tumor environment to anti-tumor immunity. The sole administration of naked poly A:U promotes striking changes within the lymphoid compartment, with all the anti-tumoral parameters being enhanced: a higher frequency of CD8+ Granzyme B+ T cells, (lower Treg/CD8+ ratio) and an important expansion of tumor-antigen specific CD8+ T cells. Also, PD1/PDL1 showed an increased expression indicating that neutralization of this axis could be exploited in combination with poly A:U. Our results shed new light to promote further assays in this dsRNA mimetic to the clinical field.


Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Experimentales/inmunología , Receptor Toll-Like 3/inmunología , Microambiente Tumoral/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/patología , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/patología , Poli A-U/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
7.
PLoS One ; 12(6): e0179897, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662055

RESUMEN

The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis.


Asunto(s)
Regulación hacia Abajo , Melanoma Experimental/irrigación sanguínea , Factor 88 de Diferenciación Mieloide/metabolismo , Neovascularización Patológica , Animales , Proliferación Celular , Silenciador del Gen , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Factor 88 de Diferenciación Mieloide/genética
8.
Front Pharmacol ; 8: 205, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487651

RESUMEN

P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 µM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 µM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 µM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.

9.
J Immunol ; 196(6): 2860-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880763

RESUMEN

The crucial role that endogenously produced IFN-ß plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-ß has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-ß required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-ß in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-ß, readily visualized in vivo. IFN-ß production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-ß. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-ß-inducing compounds in tumor therapy.


Asunto(s)
Inmunoterapia/métodos , Interferón beta/metabolismo , Poli A-U/administración & dosificación , Animales , Antígeno CD11c/metabolismo , Carcinogénesis , Humanos , Vigilancia Inmunológica , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Melanoma Experimental , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Modelos Animales , Trasplante de Neoplasias , Transducción de Señal , Receptor Toll-Like 3/metabolismo
10.
FASEB J ; 28(12): 5262-76, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25212220

RESUMEN

KLF6 is a member of the Krüppel-like factor family of transcription factors, with diverse roles in the regulation of cell physiology, including proliferation, signal transduction, and apoptosis. Mutations or down-regulation of KLF6 have been described in several human cancers. In this work, we found that KLF6-knockdown resulted in the formation of transformed foci and allowed the spontaneous conversion of NIH3T3 cells to a tumorigenic state. We further assessed the role of KLF6 in the context of oncogenic Ras. We showed that KLF6 was up-regulated by H-Ras(G12V) expression in a Jun N-terminal kinase (JNK)-dependent manner, correlated with enhanced klf6 promoter activity. We found that ectopic KLF6 expression induced a G1-phase cell cycle arrest, thereby decreasing the cell proliferation rate. In addition, constitutive KLF6 expression impaired H-Ras(G12V)-mediated loss of density-dependent growth inhibition and anchorage-independent growth. Moreover, growth of H-Ras(G12V)-driven tumors was reduced in mice challenged with cells stably expressing KLF6. KLF6 expression correlated with the up-regulation of p21, whereas neither p53 induction nor apoptotic cell death was detected. Further, p21 knockdown impaired KLF6-induced cell cycle arrest. These findings provide novel evidence highlighting KLF6 function in response to malignant transformation, suggesting the relevance of KLF6 in controlling cell proliferation and hindering tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica , Genes ras , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Células 3T3 NIH , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Eur J Immunol ; 43(7): 1849-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23636788

RESUMEN

Viral double-stranded RNA (dsRNA) mimetics have been explored in cancer immunotherapy to promote antitumoral immune response. Polyinosine-polycytidylic acid (poly I:C) and polyadenylic-polyuridylic acid (poly A:U) are synthetic analogs of viral dsRNA and strong inducers of type I interferon (IFN). We describe here a novel effect of dsRNA analogs on cancer cells: besides their potential to induce cancer cell apoptosis through an IFN-ß autocrine loop, dsRNA-elicited IFN-ß production improves dendritic cell (DC) functionality. Human A549 lung and DU145 prostate carcinoma cells significantly responded to poly I:C stimulation, producing IFN-ß at levels that were capable of activating STAT1 and enhancing CXCL10, CD40, and CD86 expression on human monocyte-derived DCs. IFN-ß produced by poly I:C-activated human cancer cells increased the capacity of monocyte-derived DCs to stimulate IFN-γ production in an allogeneic stimulatory culture in vitro. When melanoma murine B16 cells were stimulated in vitro with poly A:U and then inoculated into TLR3(-/-) mice, smaller tumors were elicited. This tumor growth inhibition was abrogated in IFNAR1(-/-) mice. Thus, dsRNA compounds are effective adjuvants not only because they activate DCs and promote strong adaptive immunity, but also because they can directly act on cancer cells to induce endogenous IFN-ß production and contribute to the antitumoral response.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Células Dendríticas/inmunología , Interferón beta/biosíntesis , Neoplasias/inmunología , ARN Bicatenario/inmunología , Animales , Biomimética , Western Blotting , Línea Celular Tumoral , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Interferón beta/inmunología , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli A-U/inmunología , Poli A-U/farmacología , Poli I-C/inmunología , Poli I-C/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
12.
J Immunol ; 190(3): 948-60, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23284054

RESUMEN

ssRNA can interact with dendritic cells (DCs) through binding to TLR7, inducing secretion of proinflammatory cytokines and type I IFN. Triggering TLR7 enhances cross-priming of CD8(+) T cells, which requires cross-presentation of exogenous Ag to DCs. However, how TLR triggering can affect Ag cross-presentation is still not clear. Using OVA as an Ag model, we observed that stimulation of TLR7 in DCs by polyuridylic acid (polyU), a synthetic ssRNA analog, generates a strong specific cytotoxic response in C57BL/6 mice. PolyU stimulate CD8α(+) DCs to cross-prime naive CD8(+) T cells in a type I IFN-dependent fashion. This enhanced cross-priming is accompanied by a higher density of OVA(256-264)/H-2K(b) complexes on CD8α(+) DCs treated with polyU, as well as by upregulation of costimulatory molecules and increased secretion of proinflammatory cytokines by DCs. Cross-priming of CD8(+) T cells by DCs treated with polyU requires proteasome and Ag translocation to cytosol through the Sec61 channel in DCs. The observed enhancement in OVA cross-presentation with polyU in DCs could be mediated by a limited Ag degradation in endophagosomal compartments and a higher permanence of OVA peptide/MHC class I complexes on DCs. These observations clearly reveal that key steps of Ag processing for cross-presentation can be modulated by TLR ligands, opening new avenues for understanding their mechanisms as adjuvants of the immune response.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Presentación de Antígeno/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Antígenos H-2/inmunología , Glicoproteínas de Membrana/efectos de los fármacos , Ovalbúmina/inmunología , Fragmentos de Péptidos/inmunología , Poli U/farmacología , Receptor Toll-Like 7/efectos de los fármacos , Animales , Presentación de Antígeno/inmunología , Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Compartimento Celular , Células Cultivadas/inmunología , Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Endosomas/inmunología , Femenino , Glicoproteínas de Membrana/inmunología , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagosomas/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Canales de Translocación SEC , Bazo/inmunología , Receptor Toll-Like 7/inmunología
13.
Cancer Res ; 72(3): 592-603, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139376

RESUMEN

Toll-like receptor (TLR) ligands may be a valuable tool to promote antitumor responses by reinforcing antitumor immunity. In addition to their expression in immune cells, functional TLRs are also expressed by many cancer cells, but their significance has been controversial. In this study, we examined the action of TLR ligands on tumor pathophysiology as a result of direct tumor cell effects. B16 murine melanoma cells were stimulated in vitro with a TLR4 ligand (LPS-B16) prior to inoculation into TLR4-deficient mice (Tlr4 (lps-del)). Under such conditions, B16 cells yielded smaller tumors than nonstimulated B16 cells. The apoptosis/proliferation balance of the cells was not modified by TLR ligand treatment, nor was this effect compromised in immunocompromised nude mice. Mechanistic investigations revealed that IFNß was the critical factor produced by TLR4-activated tumor cells in mediating their in vivo outgrowth. Transcriptional analysis showed that TLR4 activation on B16 cells induced changes in the expression of type I IFN and type I IFN-related genes. Most importantly, culture supernatants from LPS-B16 cells improved the maturation of bone marrow-derived dendritic cells (BMDC) from TLR4-deficient mice, upregulating the expression of interleukin-12 and costimulatory molecules on those cells. BMDC maturation was blunted by addition of an IFNß-neutralizing antibody. Moreover, tumor growth inhibition observed in LPS-B16 tumors was abrogated in IFNAR1-deficient mice lacking a functional type I IFN receptor for binding IFN. Together, our findings show that tumor cells can be induced through the TLR4 pathway to produce IFN and positively contribute to the antitumoral immune response.


Asunto(s)
Interferón beta/inmunología , Neoplasias Experimentales/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Antígeno CD11c/inmunología , Antígeno CD11c/metabolismo , Línea Celular Tumoral , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interferón beta/genética , Interferón beta/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/patología , Neoplasias Experimentales/prevención & control , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
14.
Prostate ; 70(11): 1153-65, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20564470

RESUMEN

BACKGROUND: It has been proposed that prostatic inflammation plays a pivotal role in the pathophysiology of benign hyperplasia and prostate cancer. However, little information is available about the prostatic reaction to bacterial compounds in vivo. Our aim was therefore to evaluate the early effects of bacterial infection on rat ventral prostate compartments. METHODS: Using a rat model of acute bacterial prostatitis by Escherichia coli, we analyzed the histological and ultrastructural changes in the prostate at 24, 48, and 72 hr postinfection. Prostatic tissues were immunostained for prostatic binding protein (PBP), ACTA2, ErbB1, and ErbB2 receptors, TUNEL, and markers of cell proliferation. Dot and Western blots for PBP, ACTA2, ErbB1, ErbB2, and TGFbeta1 were also performed. RESULTS: The prostatic epithelium became hypertrophied, with increases in PBP and ErbB1 expression at 24 hr postinfection. Moreover, inflammation induced the expression of ErbB2, a receptor strongly involved in carcinogenesis. These alterations were more pronounced at 48 hr, but the epithelium also showed apoptosis and finally atrophy at 72 hr postinfection, with a decrease in PBP and ErbB receptors. Interestingly, the epithelial cells exhibited a high level of proliferation in response to the bacteria. The stromal reaction to acute inflammation was initially characterized by smooth muscle hypertrophy. Afterwards, muscle cells acquired a secretory phenotype, with a reduction in ACTA2 at 72 hr postinfection. CONCLUSIONS: Prostatic inflammation, even at the early stages, promotes atrophic and proliferative changes, and the upregulation of ErbB receptors together with dedifferentiation of smooth muscle cells. These data suggest that repetitive reinfections could lead to uncontrolled growth in the prostate gland.


Asunto(s)
Infecciones por Escherichia coli/patología , Escherichia coli/inmunología , Próstata/patología , Prostatitis/patología , Actinas/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , Procesos de Crecimiento Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptores ErbB/biosíntesis , Receptores ErbB/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Microscopía Electrónica , Proteínas de Unión a Fosfatidiletanolamina/biosíntesis , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Próstata/inmunología , Próstata/metabolismo , Próstata/microbiología , Prostatitis/inmunología , Prostatitis/metabolismo , Prostatitis/microbiología , Ratas , Ratas Wistar , Células del Estroma/metabolismo , Células del Estroma/patología , Factor de Crecimiento Transformador beta1/metabolismo
15.
Prostate ; 69(13): 1387-97, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19496069

RESUMEN

BACKGROUND: Chronic inflammation has been postulated to be an important driving force to prostate carcinoma. Toll-like receptors (TLRs) compose a family of receptors mainly expressed on immune cells. Recently, functional TLRs have been shown to be also expressed in numerous cancer cells, but their significance has only recently begun to be explored. The purpose of this study was to investigate the putative role of TLR4 expression in prostate carcinoma. METHODS: To determine if there is an association between TLR4 expression and the malignancy of the tumor, 35 prostate carcinoma samples showing different Gleason grades were analyzed by immunohistochemistry. Also, to explore the functionality of the receptors expressed on the epithelium, we analyzed the type of cytokine response elicited and the signaling pathways involved after TLR4 triggering in the human prostate adenocarcinoma cell line, DU-145. RESULTS: TLR4 is expressed in the normal prostate gland in both stroma and epithelium. TLR4 expression significantly drops to negative values as the Gleason grade augments in both, stroma and epithelium. Moreover, DU-145 cells also exhibit TLR4 expression and respond to TLR4 agonists, activating the transcription factor NF-kappaB and increasing the expression of pro-inflammatory mediators. Inhibition of the molecular adaptors MyD88 and MAL by overexpression of dominant-negative mutants diminished LPS-induced activation of NF-kappaB, showing that DU-145 cells activate the NF-kappaB through MyD88-dependent signaling pathways. CONCLUSIONS: We hypothesize that TLR4 in prostate cells could synergize with innate immune cells contributing to an eventual inflammatory process, which in genetically prone individuals could promote carcinogenesis. Prostate 69: 1387-1397, 2009. (c) 2009 Wiley-Liss, Inc.


Asunto(s)
Adenocarcinoma/inmunología , Próstata/fisiología , Neoplasias de la Próstata/inmunología , Prostatitis/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Línea Celular Tumoral , Quimiocinas/genética , Citocinas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/fisiopatología , Prostatitis/patología , Prostatitis/fisiopatología , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología
16.
Cancer Res ; 67(21): 10519-27, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17974996

RESUMEN

Although an eruption of information on the role of Toll-like receptor 4 (TLR4), the main receptor for bacterial lipopolysaccharide, in activating macrophages and dendritic cells has emerged, very little is known about the role of TLR4 present on epithelial cells from sterile environments like tumors. The main goal of this work was to investigate the consequences of TLR4 activation present on tumor cells in two different animal models of cancer: the Dunning rat prostate cancer and the B16 murine melanoma models. We show that (a) activating TLR4 signaling in two different tumor cell lines in vitro modifies the tumor outgrowth in vivo; (b) this effect is not due to a direct consequence of TLR4 signaling on the proliferation/apoptosis balance of the tumor cells; (c) the T-cell compartment is somehow involved in the described phenomenon because the inhibitory effect observed is not seen in athymic nude mice; and (d) tumor-infiltrating lymphocytes purified from tumors induced by TLR4-activated cells show strong induction of IFN gamma transcript in detriment of interleukin-10 transcript, suggesting a change in their functionality. We hypothesize that TLR4 signaling in tumor cells in vitro induces the expression of proinflammatory mediators, which could dramatically alter the maturation state of dendritic cells present at the site of inoculation, switching the type of immune response elicited against the tumor. These results open up new avenues for understanding the role of TLR4 in tumor cells and for identifying potential new therapy strategies for cancer.


Asunto(s)
Melanoma Experimental/prevención & control , Neoplasias de la Próstata/prevención & control , Receptor Toll-Like 4/inmunología , Animales , Complejo CD3/fisiología , Línea Celular Tumoral , Islas de CpG , Células Dendríticas/fisiología , Lípido A/farmacología , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/patología , Ratas , Transducción de Señal , Factor de Transcripción ReIA/metabolismo
17.
Crit Rev Immunol ; 27(1): 33-46, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17430095

RESUMEN

The prostate is the target of many inflammatory and neoplastic disorders that affect men of all ages. Pathological conditions of the prostate gland range from infection of this organ by ascending bacteria from infected urine, to chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) of a still unknown etiology (accompanied with inflammation and lymphocyte infiltration of the gland), to benign hyperplasia and cancer. Patients under 50 years of age usually suffer from CP/CPPS, a chronic inflammatory syndrome characterized by pelvic pain, irritative voiding symptoms, and sexual dysfunction complaints. In this review, we summarize the current knowledge regarding immunological alterations present in CP/ CPPS patients. Remarkably, an inflammation state, in the absence of an invading infectious agent, is established in these patients, suggesting that an autoimmune process could be involved. In fact, specific autoimmune response to prostate antigens has recently been reported in CP/CPPS patients. Autoimmune response to prostate gland affects the seminal quality reported in these patients and may have critical consequences in their fertility. It is anticipated that preclinical studies in experimental models for CP/CPSS will provide important insights into the etiopathogenic mechanisms involved in this disease. We discuss here the similarities and the differences between human disease and experimental models and argue for the importance of the prostate gland in male reproductive function. Ultimately, we suggest that a state of inflammation, originally incited by an autoimmune response within the prostate, together with a diminished prostate functionality, may compromise male fertility.


Asunto(s)
Enfermedades Autoinmunes/etiología , Prostatitis/etiología , Prostatitis/inmunología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Masculino , Dolor Pélvico/etiología , Dolor Pélvico/inmunología
18.
Infect Immun ; 74(12): 6973-81, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16954392

RESUMEN

Although Chlamydia infections are widespread throughout the world, data about immunopathogenesis of genitourinary tract infections in males are very limited. In the present work we present an in vitro model of male genital tract-derived epithelial cells, more precisely prostate epithelial cells (PEC), to analyze if they are susceptible and able to respond to Chlamydia muridarum infection. Our results demonstrate that rat PEC are susceptible to C. muridarum infection and respond to this pathogen by up-regulating different proinflammatory cytokine and chemokine genes that could participate in the recruitment and local activation of immune cells, therefore influencing innate and adaptive immune responses during Chlamydia infection. Moreover, we analyzed the expression of Toll-like receptor 4 (TLR4), TLR2, and related molecules on PEC and the effect of C. muridarum infection on their expression. Our results demonstrate that PEC express significant levels of TLR4, CD14, TLR2, and the adaptor molecule MyD88 and up-regulate these proteins in response to C. muridarum infection. Indeed, TLR4, CD14, TLR2, and the adaptor MyD88 are specifically recruited to the vicinity of the bacterial inclusion, suggesting that these TLRs are actively engaged in signaling from this intracellular location in these cells. This is, to our knowledge, the first time that an in vitro model of infection with Chlamydia of male tract-derived epithelial cells has been achieved, and it provides the opportunity to determine how these cells respond and participate in modulating innate and adaptive immune response during Chlamydia infections.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia muridarum/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , Próstata/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Infecciones por Chlamydia/metabolismo , Citocinas/metabolismo , Células Epiteliales/química , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Inmunidad Innata , Masculino , Modelos Biológicos , Factor 88 de Diferenciación Mieloide/análisis , FN-kappa B/metabolismo , Próstata/química , Próstata/microbiología , Ratas , Receptor Toll-Like 2/análisis , Receptor Toll-Like 4/análisis
19.
J Immunol ; 177(2): 957-67, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16818751

RESUMEN

We have recently proposed an autoimmune etiology in approximately 35% of chronic nonbacterial prostatitis patients, the most frequent form of prostatitis observed, because they exhibit IFN-gamma-secreting lymphocytes specific to prostate Ags. Interestingly, this particular group of patients, but not the rest of chronic nonbacterial prostatitis patients, also presented striking abnormalities in their semen quality. In this work, we use an experimental animal model of autoimmune prostatitis on Wistar rats developed in our laboratory to investigate when, where, and how sperm cells from autoimmune prostatitis individuals are being damaged. As in patients, a marked reduction in sperm concentration, almost null sperm motility and viability, and an increased percentage of apoptotic spermatozoa were detected in samples from animals with the disease. Prostate-specific autoantibodies as well as elevated levels of NO, TNF-alpha, and IFN-gamma were also detected in their seminal plasma. In contrast, epididymal spermatozoa remain intact, indicating that sperm damage occurs at the moment of joining of prostate secretion to sperm cells during ejaculation. These results were further supported by experiments in which mixture of normal sperm cells with autoimmune seminal plasma were performed. We hypothesize that sperm damage in experimental autoimmune prostatitis can be the consequence of an inflammatory milieu, originally produced by an autoimmune response in the prostate; a diminished prostate functionality, evidenced by reduced levels of citric acid in semen or by both mechanisms simultaneously. Once more, we suggest that autoimmunity to prostate may have consequences on fertility.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Próstata/patología , Prostatitis/inmunología , Prostatitis/patología , Semen/inmunología , Animales , Enfermedades Autoinmunes/metabolismo , Biomarcadores/metabolismo , Ácido Cítrico/antagonistas & inhibidores , Ácido Cítrico/metabolismo , Citocinas/biosíntesis , Citocinas/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Interferón gamma/biosíntesis , Masculino , Óxido Nítrico/biosíntesis , Próstata/inmunología , Prostatitis/metabolismo , Ratas , Ratas Wistar , Semen/metabolismo , Capacitación Espermática/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis
20.
J Leukoc Biol ; 79(5): 989-98, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16522744

RESUMEN

Despite the prevalence of prostate disease, little is known about the immunobiology of the prostate and its contribution to disease. The main goal of this work was to investigate how prostate epithelial cells deal with inflammatory stimuli. To this aim, we stimulated a rat prostate epithelial cell line [metastasis-lung (MAT-LU)] or rat primary epithelial cells with lipopolysaccharide (LPS). Prostate epithelial cells constitutively express significant levels of Toll-like receptor 4 (TLR4) and CD14 mRNA. TLR2 transcription could also be demonstrated, suggesting that these cells could recognize a broader spectrum of microbial molecular patterns. TLR4, TLR2, and CD14 proteins were also detected, although not at the cell surface but intracellularly. Prostate epithelial cells not only express these receptors, but they are also able to respond to LPS, and LPS-stimulated MAT-LU cells activate nuclear factor-kappaB transcription factor, induce the expression of inducible nitric oxide (NO) synthase, and secrete NO. Even more, numerous chemokine genes are up-regulated or induced in this response. Our results clearly demonstrate that prostate epithelial cells are fully competent to respond. The fact that they express TLR4 and TLR2 intracellularly suggests the presence of regulatory mechanisms, which once overcome, could turn these cells into active players of the innate immunity, capable of initiating an inflammatory response.


Asunto(s)
Células Epiteliales/inmunología , Infecciones/inmunología , Mediadores de Inflamación/metabolismo , Próstata/inmunología , Prostatitis/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células Epiteliales/metabolismo , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Infecciones/fisiopatología , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos , Masculino , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Próstata/citología , Próstata/fisiopatología , Prostatitis/inducido químicamente , Prostatitis/fisiopatología , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA