Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 9(1): 670, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679618

RESUMEN

The termite gut is an efficient decomposer of polyphenol-rich diets, such as lignocellulosic biomasses, and it has been proposed that non-enzymatic oxidative mechanisms could be involved with the digestive process in these animals. However, oxidant levels are completely unknown in termites, as well as protective mechanisms against oxidative damage to the termite gut and its microbiota. As the first step in investigating the role oxidants plays in termite gut physiology, this work presents oxidant levels, antioxidant enzymatic defenses, cell renewal and microbiota abundance along the litter-feeding termite Cornitermes cumulans gut compartments (foregut, midgut, mixed segment and hindgut p1, p3, p4, and p5 segments) and salivary glands. The results show variable levels of oxidants along the C. cumulans gut, the production of antioxidant enzymes, gut cell renewal as potential defenses against oxidative injuries and the profile of microbiota distribution (being predominantly inverse to oxidant levels). In this fashion, the oxidative challenges imposed by polyphenol-rich diet seem to be circumvented by the C. cumulans gut, ensuring efficiency of the digestive process together with preservation of tissue homoeostasis and microbiota growth. These results present new insights into the physicochemical properties of the gut in a litter-feeding termite, expanding our view in relation to termites' digestive physiology.


Asunto(s)
Enzimas/metabolismo , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/fisiología , Isópteros/fisiología , Oxidantes/metabolismo , Animales , Antioxidantes/metabolismo , Sistema Digestivo/metabolismo , Microbioma Gastrointestinal , Herbivoria , Proteínas de Insectos/metabolismo , Lignina/metabolismo , Glándulas Salivales/metabolismo
2.
J Insect Physiol ; 59(12): 1242-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24140472

RESUMEN

Despite being the main insect pest on soybean crops in the Americas, very few studies have approached the general biology of the lepidopteran Anticarsia gemmatalis and there is a paucity of studies with embryo formation and yolk mobilization in this species. In the present work, we identified an acid phosphatase activity in the eggs of A. gemmatalis (agAP) that we further characterized by means of biochemistry and cell biology experiments. By testing several candidate substrates, this enzyme proved chiefly active with phosphotyrosine; in vitro assays suggested a link between agAP activity and dephosphorylation of egg yolk phosphotyrosine. We also detected strong activity with endogenous and exogenous short chain polyphosphates (PolyP), which are polymers of phosphate residues involved in a number of physiological processes. Both agAP activity and PolyP were shown to initially concentrate in small vesicles clearly distinct from typically larger yolk granules, suggesting subcellular compartmentalization. As PolyP has been implicated in inhibition of yolk proteases, we performed in vitro enzymatic assays with a cysteine protease to test whether it would be inhibited by PolyP. This cysteine protease is prominent in Anticarsia egg homogenates. Accordingly, short chain PolyP was a potent inhibitor of cysteine protease. We thereby suggest that PolyP hydrolysis by agAP is a triggering mechanism of yolk mobilization in A. gemmatalis.


Asunto(s)
Fosfatasa Ácida/metabolismo , Yema de Huevo/metabolismo , Mariposas Nocturnas/enzimología , Animales , Desarrollo Embrionario , Polifosfatos/metabolismo , Proteolisis
3.
J Proteomics ; 86: 1-15, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23665147

RESUMEN

PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. In order to disclose other roles of this system, a proteomic analysis of Vibrio cholerae 569BSR and its phoB/phoR mutant under high Pi levels was performed. Most of the proteins downregulated by the mutant have roles in energy production and conversion and in amino acid transport and metabolism. In contrast, the phoB/phoR mutant upregulated genes mainly involved in adaptation to atypical conditions, indicating that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways. This might be a strategy to overcome the lack of RpoS, whose expression in the stationary phase cells of V. cholerae seems to be controlled by PhoB/PhoR. Moreover, compared to the wild-type strain the phoB/phoR mutant presented a reduced cell density at stationary phase of culture in Pi abundance, lower resistance to acid shock, but higher tolerance to thermal and osmotic stresses. Together our findings show, for the first time, the requirement of PhoB/PhoR for full growth under high Pi level and for the accumulation of RpoS, indicating that PhoB/PhoR is a fundamental system for the biology of V. cholerae. BIOLOGICAL SIGNIFICANCE: Certain V. cholerae strains are pathogenic to humans, causing cholera, an acute dehydrating diarrhoeal disease endemic in Southern Asia, parts of Africa and Latin America, where it has been responsible for significant mortality and economical damage. Its ability to grow within distinct niches is dependent on gene expression regulation. PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. However, Pho regulon genes also play roles in virulence, motility and biofilm formation, among others. In this paper we report that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways, in Pi abundance. Moreover, we showed, for the first time, that the interrelationship between PhoB-RpoS-(p)ppGpp-poly(P) in V. cholerae, is somewhat diverse from the model of inter-regulation between those systems, described in Escherichia coli. The V. cholerae dependence on PhoB/PhoR for the RpoS mediated stress response and cellular growth under Pi abundance, suggests that this system's roles are broader than previously thought.


Asunto(s)
Proteínas Bacterianas/genética , Fosfatos/metabolismo , Proteómica , Vibrio cholerae O1/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/fisiología , Regulación hacia Abajo , Regulación Bacteriana de la Expresión Génica , Nucleótidos de Guanina/metabolismo , Mutación , Polifosfatos/metabolismo , Factor sigma/biosíntesis , Transcriptoma , Regulación hacia Arriba , Vibrio cholerae O1/crecimiento & desarrollo
4.
PLoS One ; 6(11): e27276, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22096545

RESUMEN

BACKGROUND: The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS: Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+)-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS: We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells.


Asunto(s)
Calcio/metabolismo , Orgánulos/metabolismo , Polifosfatos/metabolismo , Rhodnius/embriología , Rhodnius/metabolismo , Animales , Huevos , Rhodnius/citología
5.
J Insect Physiol ; 57(7): 945-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21540034

RESUMEN

In this work we characterized the degenerative process of ovarian follicles of the bug Rhodnius prolixus challenged with the non-entomopathogenic fungus Aspergillus niger. An injection of A. niger conidia directly into the hemocoel of adult R. prolixus females at the onset of vitellogenesis caused no effect on host lifespan but elicited a net reduction in egg batch size. Direct inspection of ovaries from the mycosed insects revealed that fungal challenge led to atresia of the vitellogenic follicles. Light microscopy and DAPI staining showed follicle shrinkage, ooplasm alteration and disorganization of the monolayer of follicle cells in the atretic follicles. Transmission electron microscopy of thin sections of follicle epithelium also showed nuclei with condensed chromatin, electron dense mitochondria and large autophagic vacuoles. Occurrence of apoptosis of follicle cells in these follicles was visualized by TUNEL labeling. Resorption of the yolk involved an increase in protease activities (aspartyl and cysteinyl proteases) which were associated with precocious acidification of yolk granules and degradation of yolk protein content. The role of follicle atresia in nonspecific host-pathogen associations and the origin of protease activity that led to yolk resorption are discussed.


Asunto(s)
Aspergillus niger/fisiología , Rhodnius/inmunología , Rhodnius/microbiología , Animales , Apoptosis , Proteasas de Ácido Aspártico/metabolismo , Proteasas de Cisteína/metabolismo , Femenino , Colorantes Fluorescentes , Atresia Folicular , Etiquetado Corte-Fin in Situ , Indoles/química , Microscopía Electrónica de Transmisión , Rhodnius/fisiología , Vitelogénesis
6.
Biochem J ; 429(3): 485-95, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20497125

RESUMEN

Acidocalcisomes are acidic calcium-storage compartments described from bacteria to humans and characterized by their high content in poly P (polyphosphate), a linear polymer of many tens to hundreds of Pi residues linked by high-energy phosphoanhydride bonds. In the present paper we report that millimolar levels of short-chain poly P (in terms of Pi residues) and inorganic PPi are present in sea urchin extracts as detected using 31P-NMR, enzymatic determinations and agarose gel electrophoresis. Poly P was localized to granules randomly distributed in the sea urchin eggs, as shown by labelling with the poly-P-binding domain of Escherichia coli exopolyphosphatase. These granules were enriched using iodixanol centrifugation and shown to be acidic and to contain poly P, as determined by Acridine Orange and DAPI (4',6'-diamidino-2-phenylindole) staining respectively. These granules also contained large amounts of calcium, sodium, magnesium, potassium and zinc, as detected by X-ray microanalysis, and bafilomycin A1-sensitive ATPase, pyrophosphatase and exopolyphosphatase activities, as well as Ca2+/H+ and Na+/H+ exchange activities, being therefore similar to acidocalcisomes described in other organisms. Calcium release from these granules induced by nigericin was associated with poly P hydrolysis. Although NAADP (nicotinic acid-adenine dinucleotide phosphate) released calcium from the granule fraction, this activity was not significantly enriched as compared with the NAADP-stimulated calcium release from homogenates and was not accompanied by poly P hydrolysis. GPN (glycyl-L-phenylalanine-naphthylamide) released calcium when added to sea urchin homogenates, but was unable to release calcium from acidocalcisome-enriched fractions, suggesting that these acidic stores are not the targets for NAADP.


Asunto(s)
Calcio/metabolismo , Gránulos Citoplasmáticos/metabolismo , NADP/análogos & derivados , Óvulo/metabolismo , Polifosfatos/metabolismo , Ácidos/metabolismo , Animales , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , NADP/metabolismo , Óvulo/ultraestructura , Erizos de Mar
7.
Biol Cell ; 102(7): 421-34, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20196772

RESUMEN

BACKGROUND INFORMATION: Poly P (inorganic polyphosphate) is a polymer formed by P(i) residues linked by high-energy phosphoanhydride bonds. The presence of poly P in bacteria, fungi, algae and protists has been widely recognized, but the distribution of poly P in more complex eukaryotes has been poorly studied. Poly P accumulates, together with calcium, in acidic vesicles or acidocalcisomes in a number of organisms and possesses a diverse array of functions, including roles in stress response, blood clotting, inflammation, calcification, cell proliferation and apoptosis. RESULTS: We report here that a considerable amount of phosphorus in the yolk of chicken eggs is in the form of poly P. DAPI (4',6-diamidino-2-phenylindole) staining showed that poly P is localized mainly in electron-dense vesicles located inside larger vacuoles (compound organelles) that are randomly distributed in the yolk. These internal vesicles were shown to contain calcium, potassium, sodium, magnesium, phosphorus, chlorine, iron and zinc, as detected by X-ray microanalysis and elemental mapping. These vesicles stain with the acidophilic dye Acridine Orange. The presence of poly P in organellar fractions of the egg yolk was evident in agarose gels stained with Toluidine Blue and DAPI. Of the total phosphate (Pi) of yolk organelles, 16% is present in the form of poly P. Total poly P content was not altered during the first 4 days of embryogenesis, but poly P chain length decreased after 1 day of development. CONCLUSIONS: The results of the present study identify a novel organelle in chicken egg yolk comprising acidic vesicles with a morphology, physiology and composition similar to those of acidocalcisomes, within larger acidic vacuoles. The elemental composition of these acidocalcisomes is proportionally similar to the elemental composition of the yolk, suggesting that most of these elements are located in these organelles, which might be an important storage compartment in eggs.


Asunto(s)
Calcio/metabolismo , Pollos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Yema de Huevo/citología , Yema de Huevo/metabolismo , Polifosfatos/metabolismo , Ácidos , Animales , Embrión de Pollo , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/ultraestructura , Yema de Huevo/efectos de los fármacos , Microanálisis por Sonda Electrónica , Desarrollo Embrionario/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Macrólidos/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo
8.
Insect Biochem Mol Biol ; 39(3): 198-206, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19111615

RESUMEN

Acidocalcisomes are acidic organelles containing large amounts of polyphosphate (poly P), a number of cations, and a variety of cation pumps in their limiting membrane. The vacuolar proton-pyrophosphatase (V-H(+)-PPase), a unique electrogenic proton-pump that couples pyrophosphate (PPi) hydrolysis to the active transport of protons across membranes, is commonly present in membranes of acidocalcisomes. In the course of insect oogenesis, a large amount of yolk protein is incorporated by the oocytes and stored in organelles called yolk granules (YGs). During embryogenesis, the content of these granules is degraded by acid hydrolases. These enzymes are activated by the acidification of the YG by a mechanism that is mediated by proton-pumps present in their membranes. In this work, we describe an H(+)-PPase activity in membrane fractions of oocytes and eggs of the domestic cockroach Periplaneta americana. The enzyme activity was optimum at pH around 7.0, and was dependent on Mg(2+) and inhibited by NaF, as well as by IDP and Ca(2+). Immunolocalization of the yolk preparation using antibodies against a conserved sequence of V-H(+)-PPases showed labeling of small vesicles, which also showed the presence of high concentrations of phosphorus, calcium and other elements, as revealed by electron probe X-ray microanalysis. In addition, poly P content was detected in ovaries and eggs and localized inside the yolk granules and the small vesicles. Altogether, our results provide evidence that numerous small vesicles of the eggs of P. americana present acidocalcisome-like characteristics. In addition, the possible role of these organelles during embryogenesis of this insect is discussed.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Proteínas de Insectos/metabolismo , Oocitos/metabolismo , Orgánulos/metabolismo , Periplaneta/crecimiento & desarrollo , Periplaneta/metabolismo , Animales , Femenino , Oocitos/enzimología , Oocitos/crecimiento & desarrollo , Periplaneta/enzimología , Polifosfatos/metabolismo , Transporte de Proteínas , Protones
9.
J Insect Physiol ; 54(5): 883-91, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18499122

RESUMEN

In this work, we characterized the activities of two classes of proteases and AcP during early embryogenesis of Periplaneta americana. AcP activity was first detected at day 6 and reached a maximum level at day 10 of development. Using phosphoamino acids, phosphatase activity was shown to be directed only against phosphotyrosine at day 6 while at day 10 it was also active against phosphoserine. In parallel, two classes of proteases were detected and located within yolk granules: a clan CA-cysteine protease, which was inhibited by E-64, insensitive to CA 074 and activated by acidic pH at day 3; and a neutral serine protease, which was inhibited by aprotinin at day 6. Assays of vitellin (Vt) degradation evidenced that incubations at neutral pH induced slight proteolysis, while the incubations at acidic pH did not result in Vt degradation. However, pre-incubations of Vt with AcP increased the levels of Vt acidic proteolysis and this could be inhibited by the addition of phosphatase inhibitors. On the other hand, the same pre-incubations showed no effects on the profile of degradation at neutral pH. We propose that AcP and cysteine protease cooperate to assure Vt breakdown during early embryogenesis of P. americana.


Asunto(s)
Fosfatasa Ácida/metabolismo , Cisteína Endopeptidasas/metabolismo , Periplaneta/embriología , Vitelinas/metabolismo , Factores de Edad , Animales , Cumarinas , Dipéptidos , Proteínas del Huevo/metabolismo , Ensayo de Inmunoadsorción Enzimática , Concentración de Iones de Hidrógeno , Periplaneta/metabolismo , Ácidos Fosfoaminos/metabolismo
10.
An. acad. bras. ciênc ; 77(3): 405-430, Sept. 2005. ilus
Artículo en Inglés | LILACS | ID: lil-406222

RESUMEN

Em triatomíneos, assim como em outros insetos, o acúmulo de vitelo é um processo no qual um tecido extraovariano, o corpo gorduroso, produz proteínas que são empacotadas no interior de um ovo. A principal proteína, sintetizada pelo corpo gorduroso, que é acumulada no interior de um ovócito, é a vitelogenina. Este processo é também conhecido por vitelogênese. Existem crescentes evidências em triatomíneos, que além do corpo gorduroso, o ovário também produz proteínas de vitelo. A forma como estas proteínas de vitelo entram nos ovócitos será aqui comentada. O vitelo é um material complexo composto por proteínas, lipídeos, carboidratos e outros compostos minoritários que são empacotados de uma maneira organizada no interior dos ovócitos. A fertilização dispara a embriogênese, um processo que culmina com o desenvolvimento do embrião. Durante a embriogênese o vitelo será utilizado para a construção de um novo indivíduo, a ninfa de primeiro estádio. O desafio para a próxima década é entender onde e como estas proteínas de vitelo são utilizadas junto com os seus componentes não protéicos, em compasso com o programa genético do embrião, que comanda a diferenciação celular (fase inicial da embriogênese) e diferenciação do embrião (fase final da embriogênese) no interior do ovo.


Asunto(s)
Animales , Femenino , Oogénesis/fisiología , Óvulo/crecimiento & desarrollo , Triatominae/embriología , Vitelogénesis/fisiología , Óvulo/química , Triatominae/metabolismo , Triatominae/fisiología , Vitelogeninas/metabolismo , Vitelogeninas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA