Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398293

RESUMEN

Replication of genetic material involves the creation of characteristic termini. Determining these termini is important to refine our understanding of the mechanisms involved in maintaining the genomes of cellular organisms and viruses. Here we describe a computational approach combining direct and indirect readouts to detect termini from next-generation short-read sequencing. While a direct inference of termini can come from mapping the most prominent start positions of captured DNA fragments, this approach is insufficient in cases where the DNA termini are not captured, whether for biological or technical reasons. Thus, a complementary (indirect) approach to terminus detection can be applied, taking advantage of the imbalance in coverage between forward and reverse sequence reads near termini. A resulting metric ("strand bias") can be used to detect termini even where termini are naturally blocked from capture or ends are not captured during library preparation (e.g., in tagmentation-based protocols). Applying this analysis to datasets where known DNA termini are present, such as from linear double-stranded viral genomes, yielded distinct strand bias signals corresponding to these termini. To evaluate the potential to analyze a more complex situation, we applied the analysis to examine DNA termini present early after HIV infection in a cell culture model. We observed both the known termini expected based on standard models of HIV reverse transcription (the U5-right-end and U3-left-end termini) as well as a signal corresponding to a previously described additional initiation site for plus-strand synthesis (cPPT [central polypurine tract]). Interestingly, we also detected putative terminus signals at additional sites. The strongest of these are a set that share several characteristics with the previously characterized plus-strand initiation sites (the cPPT and 3' PPT [polypurine tract] sites): (i) an observed spike in directly captured cDNA ends, an indirect terminus signal evident in localized strand bias, (iii) a preference for location on the plus-strand, (iv) an upstream purine-rich motif, and (v) a decrease in terminus signal at late time points after infection. These characteristics are consistent in duplicate samples in two different genotypes (wild type and integrase-lacking HIV). The observation of distinct internal termini associated with multiple purine-rich regions raises a possibility that multiple internal initiations of plus-strand synthesis might contribute to HIV replication.

2.
Cell Rep ; 20(12): 2756-2765, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930672

RESUMEN

At fertilization, the paternal genome undergoes extensive reprogramming through protamine-histone exchange and active DNA demethylation, but only a few maternal factors have been defined in these processes. We identified maternal Mettl23 as a protein arginine methyltransferase (PRMT), which most likely catalyzes the asymmetric dimethylation of histone H3R17 (H3R17me2a), as indicated by in vitro assays and treatment with TBBD, an H3R17 PRMT inhibitor. Maternal histone H3.3, which is essential for paternal nucleosomal assembly, is unable to be incorporated into the male pronucleus when it lacks R17me2a. Mettl23 interacts with Tet3, a 5mC-oxidizing enzyme responsible for active DNA demethylation, by binding to another maternal factor, GSE (gonad-specific expression). Depletion of Mettl23 from oocytes resulted in impaired accumulation of GSE, Tet3, and 5hmC in the male pronucleus, suggesting that Mettl23 may recruit GSE-Tet3 to chromatin. Our findings establish H3R17me2a and its catalyzing enzyme Mettl23 as key regulators of paternal genome reprogramming.


Asunto(s)
Arginina/metabolismo , Reprogramación Celular , Genoma , Histonas/metabolismo , Cigoto/metabolismo , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona , Desmetilación del ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Desarrollo Embrionario , Masculino , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Ratones , Oxidación-Reducción , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo
3.
Genome Biol ; 17: 36, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26922637

RESUMEN

BACKGROUND: Transcription factor-dependent cellular reprogramming is integral to normal development and is central to production of induced pluripotent stem cells. This process typically requires pioneer transcription factors (TFs) to induce de novo formation of enhancers at previously closed chromatin. Mechanistic information on this process is currently sparse. RESULTS: Here we explore the mechanistic basis by which GATA3 functions as a pioneer TF in a cellular reprogramming event relevant to breast cancer, the mesenchymal to epithelial transition (MET). In some instances, GATA3 binds previously inaccessible chromatin, characterized by stable, positioned nucleosomes where it induces nucleosome eviction, alters local histone modifications, and remodels local chromatin architecture. At other loci, GATA3 binding induces nucleosome sliding without concomitant generation of accessible chromatin. Deletion of the transactivation domain retains the chromatin binding ability of GATA3 but cripples chromatin reprogramming ability, resulting in failure to induce MET. CONCLUSIONS: These data provide mechanistic insights into GATA3-mediated chromatin reprogramming during MET, and suggest unexpected complexity to TF pioneering. Successful reprogramming requires stable binding to a nucleosomal site; activation domain-dependent recruitment of co-factors including BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex; and appropriate genomic context. The resulting model provides a new conceptual framework for de novo enhancer establishment by a pioneer TF.


Asunto(s)
Neoplasias de la Mama/genética , Reprogramación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Factor de Transcripción GATA3/genética , Neoplasias de la Mama/patología , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Nucleosomas/genética , Factores de Transcripción/genética
4.
Nucleic Acids Res ; 44(1): 472-84, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26626149

RESUMEN

BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Cromatina/genética , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN , Histonas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/genética , Nucleosomas/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Alineación de Secuencia
5.
Genes Cells ; 20(9): 681-94, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123175

RESUMEN

Homologous recombinational repair (HR) is one of the major repair systems for DNA double-strand breaks. RAD51 is a key molecule in HR, and the RAD51 concentration in the cell nucleus increases after DNA damage induction. However, the mechanism that regulates the intracellular distribution of RAD51 is still unclear. Here, we show that hCAS/CSE1L associates with RAD51 in human cells. We found that hCAS/CSE1L negatively regulates the nuclear protein level of RAD51 under normal conditions. hCAS/CSE1L is also required to repress the DNA damage-induced focus formation of RAD51. Moreover, we show that hCAS/CSE1L plays roles in the regulation of the HR activity and in chromosome stability. These findings suggest that hCAS/CSE1L is responsible for controlling the HR activity by directly interacting with RAD51.


Asunto(s)
Proteína de Susceptibilidad a Apoptosis Celular/metabolismo , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Línea Celular Tumoral , Núcleo Celular/metabolismo , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , Humanos
6.
Sci Rep ; 4: 4863, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24798879

RESUMEN

Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to promote the RAD51-mediated homologous pairing in nucleosomal DNA. In higher eukaryotes, most nucleosomes form higher-ordered chromatin containing the linker histone H1. However, the mechanism by which RAD51/RAD54-mediated homologous pairing occurs in higher-ordered chromatin has not been elucidated. In this study, we found that a histone chaperone, Nap1, accumulates on DSB sites in human cells, and DSB repair is substantially decreased in Nap1-knockdown cells. We determined that Nap1 binds to RAD54, enhances the RAD54-mediated nucleosome remodeling by evicting histone H1, and eventually stimulates the RAD51-mediated homologous pairing in higher-ordered chromatin containing histone H1.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Histonas/metabolismo , Recombinación Homóloga/genética , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Recombinasa Rad51/metabolismo , Adenosina Trifosfatasas/metabolismo , Línea Celular , Cromatina/genética , ADN Helicasas/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Histonas/genética , Humanos , Proteínas Nucleares/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Recombinasa Rad51/genética , ARNt Metiltransferasas
7.
J Biol Chem ; 284(21): 14326-36, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19329439

RESUMEN

The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinación Genética , Línea Celular Tumoral , Emparejamiento Cromosómico , ADN/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA