Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomed Pharmacother ; 135: 111229, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33444950

RESUMEN

Essential oils from plants are a potential source of molecules having anti-inflammatory, anticancer, cardiotropic, and other activities. However, most of these effects lack mechanistic explanations and structure-activity relationship testing. In the present study, we: 1) identified the nutmeg essential oil (NEO) composition; 2) using molecular docking, we determined the putative regulatory binding sites on the connexin 43 (Cx43) that is responsible for gap junction-dependent intercellular communication (GJIC) in the majority of tissues; 3) examined the effect of NEO and its three constituents - sabinene, α-pinene, and α-copaene - on GJ conductance and gating in Novikoff cells expressing endogenous Cx43; and 4) verified whether NEO effects on GJIC correlated with its action on Novikoff cell viability, proliferation, and colony formation capability. Our results revealed NEO and its constituents as potent and efficient Cx43 GJ inhibitors acting by slow gating mechanism. In addition, NEO reduced Novikoff hepatoma cell viability, proliferation, and colony formation capability; however, this was achieved at higher doses and was unrelated to its effects on GJIC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Myristica , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Simulación del Acoplamiento Molecular , Myristica/química , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Unión Proteica , Ratas , Transducción de Señal
2.
PLoS Comput Biol ; 13(4): e1005464, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28384220

RESUMEN

We combined the Hodgkin-Huxley equations and a 36-state model of gap junction channel gating to simulate electrical signal transfer through electrical synapses. Differently from most previous studies, our model can account for dynamic modulation of junctional conductance during the spread of electrical signal between coupled neurons. The model of electrical synapse is based on electrical properties of the gap junction channel encompassing two fast and two slow gates triggered by the transjunctional voltage. We quantified the influence of a difference in input resistances of electrically coupled neurons and instantaneous conductance-voltage rectification of gap junctions on an asymmetry of cell-to-cell signaling. We demonstrated that such asymmetry strongly depends on junctional conductance and can lead to the unidirectional transfer of action potentials. The simulation results also revealed that voltage spikes, which develop between neighboring cells during the spread of action potentials, can induce a rapid decay of junctional conductance, thus demonstrating spiking activity-dependent short-term plasticity of electrical synapses. This conclusion was supported by experimental data obtained in HeLa cells transfected with connexin45, which is among connexin isoforms expressed in neurons. Moreover, the model allowed us to replicate the kinetics of junctional conductance under different levels of intracellular concentration of free magnesium ([Mg2+]i), which was experimentally recorded in cells expressing connexin36, a major neuronal connexin. We demonstrated that such [Mg2+]i-dependent long-term plasticity of the electrical synapse can be adequately reproduced through the changes of slow gate parameters of the 36-state model. This suggests that some types of chemical modulation of gap junctions can be executed through the underlying mechanisms of voltage gating. Overall, the developed model accounts for direction-dependent asymmetry, as well as for short- and long-term plasticity of electrical synapses. Our modeling results demonstrate that such complex behavior of the electrical synapse is important in shaping the response of coupled neurons.


Asunto(s)
Sinapsis Eléctricas/fisiología , Uniones Comunicantes/fisiología , Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción , Comunicación Celular , Conexinas/metabolismo , Células HeLa , Humanos , Magnesio/metabolismo , Vías Nerviosas , Plasticidad Neuronal
3.
J Gen Physiol ; 147(3): 273-88, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26880752

RESUMEN

We combined Hodgkin-Huxley equations and gating models of gap junction (GJ) channels to simulate the spread of excitation in two-dimensional networks composed of neurons interconnected by voltage-gated GJs. Each GJ channel contains two fast and slow gates, each exhibiting current-voltage (I-V) rectification and gating properties that depend on transjunctional voltage (Vj). The data obtained show how junctional conductance (gj), which is necessary for synchronization of the neuronal network, depends on its size and the intrinsic firing rate of neurons. A phase shift between action potentials (APs) of neighboring neurons creates bipolar, short-lasting Vj spikes of approximately ± 100 mV that induce Vj gating, leading to a small decay of gj, which can accumulate into larger decays during bursting activity of neurons. We show that I-V rectification of GJs in local regions of the two-dimensional network of neurons can lead to unidirectional AP transfer and consequently to reverberation of excitation. This reverberation can be initiated by a single electrical pulse and terminated by a low-amplitude pulse applied in a specific window of reverberation cycle. Thus, the model accounts for the influence of dynamically modulatable electrical synapses in shaping the function of a neuronal network and the formation of reverberation, which, as proposed earlier, may be important for the development of short-term memory and its consolidation into long-term memory.


Asunto(s)
Potenciales de Acción , Conexinas/fisiología , Sinapsis Eléctricas/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Conexinas/metabolismo , Sinapsis Eléctricas/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA