Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19516, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174603

RESUMEN

The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Glioblastoma , Metotrexato , Nanopartículas , Poloxámero , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/diagnóstico por imagen , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Nanopartículas/química , Ratas , Poloxámero/química , Metotrexato/química , Metotrexato/administración & dosificación , Metotrexato/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/uso terapéutico , Distribución Tisular , Portadores de Fármacos/química , Masculino , Sistemas de Liberación de Medicamentos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos
2.
Hum Exp Toxicol ; 42: 9603271231217988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38064424

RESUMEN

The chemotherapeutic drug 5-flourouracil (5FU) is frequently used to treat a wide range of solid malignant tumors, such as colorectal, pancreatic, gastric, breast, and head and neck cancers. Its antitumoral effects are achieved by interfering with the synthesis of RNA and DNA and by inhibiting thymidylate synthase in both malignant and non-malignant cells. Therefore, it can be responsible for severe toxicities in crucial body organs, including heart, liver, kidney, and reproductive system. Given the fact that 5FU-induced reproductive toxicity may limit the clinical application of this drug, in this study, we aimed to discuss the main locations and mechanisms of the 5FU-induced reproductive toxicity. Initially, we discussed the impact of 5FU on the male reproductive system, which leads to damage of the seminiferous epithelial cells and the development of vacuoles in Sertoli cells. Although no noticeable changes occur at the histopathological level, there is a decrease in the weight of the prostate. Additionally, 5FU causes significant abnormalities in spermatogenesis, including germ cell shedding, spermatid halo formation, polynucleated giant cells, and decreased sperm count. Finally, in females, 5FU-induced reproductive toxicity is characterized by the presence of atretic secondary and antral follicles with reduced numbers of growing follicles, ovarian weight, and maturity impairment.


Asunto(s)
Semen , Espermatozoides , Masculino , Femenino , Humanos , Espermatogénesis , Folículo Ovárico , Fluorouracilo/toxicidad , Testículo
3.
Eur J Pharm Biopharm ; 193: 175-186, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926270

RESUMEN

This study aims to overcome physiological barriers and increase the therapeutic index for the treatment of glioblastoma (GBM) tumors by using Paclitaxel (PTX) loaded Poly(lactic co-glycolic acid) nanoparticles (PTX-PLGA-NPs) and Doxorubicin (DOX) loaded Poly (lactic co-glycolic acid) nanoparticles (DOX-PLGA-NPs). The hydrodynamic diameter of nanoparticles (NPs) was characterized by dynamic light scattering (DLS) which was 94 ± 4 nm and 133 ± 6 nm for DOX-PLGA-NPs, and PTX-PLGA-NPs, respectively. The zeta potential for DOX-PLGA-NPs and PTX-PLGA-NPs were -15.2 ± 0.18 mV and -17.3 ± 0.34 mV, respectively. The cytotoxicity of PTX-PLGA-NPs and DOX-PLGA-NPs was augmented compared to DOX and PTX on C6 GBM cells. The Lactate dehydrogenase (LDH) tests for various formulations were carried out. The results indicated that the amount of released LDH was 262 ± 7.84 U.L-1 at the concentration of 2 mg/mL in the combination therapy, which was much higher than other groups (DOX-PLGA-NPs (210 ± 6.92 U.L-1), PTX-PLGA-NPs (201 ± 8.65 U.L-1), DOX (110 ± 9.81 U.L-1), PTX (95 ± 5.02 U.L-1) and PTX + DOX (67 ± 4.89 U.L-1)). MRI results of the combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs indicated that GBM tumor size decreased considerably compared to the other formulations. Also, combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs demonstrated a longer median survival of more than 80 days compared to PTX (38 days), DOX (37 days) and PTX + DOX (48 days), PTX-NPs (58 days) and DOX-NPs (62 days). The results of locomotion, body weight, rearing and grooming assays indicated that combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs had the most positive effect on the movements of rats compared to the other formulations.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Ratas , Animales , Paclitaxel , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Línea Celular Tumoral , Doxorrubicina , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología
4.
J Biochem Mol Toxicol ; 37(9): e23405, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37338137

RESUMEN

Mucositis is among the most common side effects of 5-Fluorouracil (5-FU) and other cancer therapeutic drugs. Thymoquinone (TQ), a bioactive constituent extracted from Nigella sativa, has antioxidant and anti-inflammatory properties and can modify acute gastrointestinal injury. To investigate the effects of TQ on mucositis induced by 5-FU, studied animals were divided into four groups: control, 5-FU unit dose (300 mg/kg) to cause oral and intestinal mucositis (OM and IM), TQ (2.5 mg/kg) and TQ (2.5 mg/kg) plus 5-FU. Due to The molecular mechanisms, it was confirmed that the expression of NF-κß and HIF-1 increases in OM. The serum levels of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD), as well as pathological parameters, were assessed. Based on our results, the nuclear factor-kappa ß gene expression in the tongue was downregulated significantly in the 5-FU + TQ compared to the 5-FU. TQ treatment can diminish MDA, and a reduction in oxidative stress was shown. TQ could also reduce the severity of tissue destruction and damaging effects induced by 5-FU on the tongue and intestine. We also observed lower villus length and width in the intestine of the 5-FU group compared to the control group. According to our research's pathological, biochemical, and molecular results, treatment with TQ as an anti-inflammatory and antioxidant compound may be the potential to improve and treat 5-FU-induced OM and IM, and TQ could be used against cancer treatment drugs and exhibit fewer adverse effects.


Asunto(s)
Antineoplásicos , Mucositis , Ratones , Animales , Fluorouracilo/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/prevención & control , Antineoplásicos/farmacología , Estrés Oxidativo
5.
J Control Release ; 349: 649-661, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878729

RESUMEN

Glioblastoma (GBM) is an aggressive, fatal and malignant primary brain tumor. Despite the current standard treatment for glioblastoma patients including neurosurgical resection, followed by concomitant radiation and chemotherapy, the median survival rate is only about 15 months. An unresolved challenge for current therapies is related to getting drugs through the blood-brain barrier (BBB), which hinders many chemotherapeutic agents from reaching tumors cells. Although a large amount of research has been done to circumvent the BBB and deliver drugs to the brain, with nanoparticles (NPs) taking the lead, the challenge is still high. In this regard, the BBB and how to transfer drug pathways through the BBB, especially using NPs, are introduced here. Afterwards, the latest advances in drug delivery, co-drug delivery, and combination modalities are described specifically for GBM treatments using natural and synthetic polymeric NPs and adjuvant therapies including hyperthermia, photodynamic therapy and also ketogenic regimens. In addition, receptor-mediated endocytosis agents that exist in endothelial capillary cells of the brain are explained. Lastly, future directions to finally deliver drugs through the BBB for GBM treatment are emphasized. It is the hope that this review can provide a number of practical pathways for the future development of BBB permeable nanochemotherapeutics against GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Hipertermia Inducida , Nanopartículas , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Glioblastoma/patología , Humanos , Polímeros/uso terapéutico
6.
Life Sci ; 256: 117943, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32531377

RESUMEN

AIM: The aim of this study was to improve the therapeutic index of chemotherapeutic drugs on glioblastoma cells through an improved co-drug delivery system. MATERIALS AND METHODS: Methotrexate (MTX) and paclitaxel (PTX) were co-loaded into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) coated with polyvinyl alcohol (PVA) and Poloxamer188 (P188). KEY FINDINGS: The mean size of the NPs was about 212 nm, with a zeta potential of about -15.7 mV. Encapsulation efficiency (EE%) and drug loading (DL%) were determined to be 72% and 4% for MTX and 85% and 4.9% for PTX, respectively. The prepared NPs were characterized by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Moreover, an in vitro sustained release profile was observed for both drug loaded PLGA NPs. Glioblastoma cellular uptake of the NPs was confirmed by fluorescence microscopy and cell survival rate was investigated through the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method after 48 h of incubation showing IC50 values of 24.5 µg·mL-1 for PTX and 9.5 µg·mL-1 for MTX for the MTX/PTX co-loaded PLGA nanoparticles coated with PVA/P188 (Co-2 NPs). Apoptosis and necrosis were also studied via flow cytometry, the lactate dehydrogenase (LDH) assay and the amount of anti-apoptotic protein (Bcl-2) expression. Blood compatibility of the co-delivery of PTX and MTX loaded PLGA NPs was investigated using a hemolysis method as well. SIGNIFICANCE: The co-delivery of PTX and MTX loaded PLGA NPs is promising for the treatment of glioblastoma compared to their respective free drug formulations and, thus, should be further investigated.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Composición de Medicamentos , Glioblastoma/tratamiento farmacológico , Metotrexato/uso terapéutico , Nanopartículas/química , Paclitaxel/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Antineoplásicos/farmacología , Apolipoproteínas/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Liberación de Fármacos , Endocitosis/efectos de los fármacos , Glioblastoma/patología , Hemólisis/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , L-Lactato Deshidrogenasa/metabolismo , Metotrexato/farmacología , Nanopartículas/ultraestructura , Paclitaxel/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas
7.
Adv Pharm Bull ; 8(1): 77-84, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29670842

RESUMEN

Purpose: The size of polymeric nanoparticles is considered as an effective factor in cancer therapy due to enterance into tumor tissue via the EPR effect. The purpose of this work was to investigate the effective parameters on poly(lactic-co-glycolic acid)-paclitaxel (PLGA -PTX) nanoparticles size. Methods: We prepared PLGA-PTX nanoparticles via single emulsion and precipitation methods with variable paremeters including drug concentration, aqueous to organic phase volume ratio, polymer concentration, sonication time and PVA concentration. Results: PLGA-PTX nanoparticles were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). The results exhibited that the diameter of nanoparticles enhanced with increasing drug, polymer and PVA concentrations whereas organic to aqueous phase volume ratio and sonication time required to the optimization for a given size. Conclusion: The precipitation method provides smaller nanoparticles compared to emulsion one. Variable parameters including drug concentration, aqueous to organic phase volume ratio, polymer concentration, sonication time and PVA concentration affect diameter of nanoparticles.

8.
Biochim Biophys Acta Biomembr ; 1860(2): 491-504, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28962904

RESUMEN

Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Agregado de Proteínas , Espectrometría de Fluorescencia/métodos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Carbocianinas/química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Interacciones Hidrofóbicas e Hidrofílicas , Lipopéptidos/química , Lipopéptidos/genética , Lipopéptidos/metabolismo , Microscopía Fluorescente , Células PC12 , Unión Proteica , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Rodaminas/química
9.
Biochim Biophys Acta ; 1788(12): 2509-17, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19796627

RESUMEN

Cell-penetrating peptides (CPPs) are membrane permeable vectors recognized for their intrinsic ability to gain access to the cell interior. The hydrophobic counter-anion, pyrenebutyrate, enhances cellular uptake of oligoarginine CPPs. To elucidate CPP uptake mechanisms, the effect of pyrenebutyrate on well-recognized CPPs with varying hydrophobicity and arginine content is investigated. The cellular CPP uptake and CPP-mediated oligonucleotide delivery is analyzed by fluorescence activated cell sorting, confocal microscopy, and a cell-based splice-switching assay. The splice-switching oligonucleotide is a mixmer of 2'-O-methyl RNA and locked nucleic acids delivered as a non-covalent complex with 10-fold molar CPP excess. CPP-induced membrane perturbation on large unilamellar vesicles is investigated in calcein release experiments. We observed that pyrenebutyrate facilitates cellular uptake and translocation of oligonucleotide mediated by oligoarginine nonamer while limited effect of pyrenebutyrate on more hydrophobic CPPs was observed. By combining the different experimental results we conclude that the pathway for cellular uptake of oligoarginine is dominated by direct membrane translocation, whereas the pathway for oligoarginine-mediated oligonucleotide translocation is dominated by endocytosis. Both mechanisms are promoted by pyrenebutyrate and we suggest that pyrenebutyrate has different sites of action for the two uptake and translocation mechanisms.


Asunto(s)
Péptidos/química , Pirenos/química , Membrana Celular , ADN/química , ADN/farmacología , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/farmacología , Pirenos/farmacología , ARN/química , ARN/farmacología , Transfección/métodos
10.
J Am Chem Soc ; 131(13): 4613-5, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19281235

RESUMEN

The biarsenical-tetracysteine motif is a useful tag for genetic labeling of proteins with small molecules in living cells. The present study concerns the structure of a 12 amino acid peptide FLNCCPGCCMEP bound to the fluorophore ReAsH based on resorufin. (1)H NMR spectroscopy was used to determine the solution structure of the complex formed between the peptide and the ReAsH moiety. Structure calculations based on the NMR results showed that the backbone structure of the peptide is fairly well defined, with a hairpinlike turn, similar to a type-II beta-turn, formed by the central CPGC segment. The most stable complex was formed when As2 was bonded to C4 and C5 and As1 to C8 and C9. Two clear NOESY cross-peaks between the Phe1 side chain and ReAsH confirmed the close positioning of the phenyl ring of Phe1 and ReAsH. Phe1 was found to have an edge-face geometry relative to ReAsH. The close interaction between Phe1 and ReAsH may be highly significant for the fluorescence properties of the ReAsH complex.


Asunto(s)
Secuencias de Aminoácidos , Arsenicales/química , Cisteína/química , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Sitios de Unión , Colorantes Fluorescentes/química , Oxazinas/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA