Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 544, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434510

RESUMEN

Calcareous soil contains many problems such as the lack of sources of major and minor elements that are useful for plant growth and development. Plant extracts and nanoparticles are very popular as biostimulants in plant production. Here, the effect of aqueous, non-aqueous and alcoholic oat extracts on the growth, biochemical response of oats leaves and grains grown in experimental fields under new reclamation lands were studied. Moreover, different oat extracts were a pathway through the copper-dependent metal-organic framework (MOFs) to separate bioactive molecules from extracts such as salicylic acid, anthraquinone, and triacylglycerol. Additionally, the separated molecules incorporated in Cu-BTC MOFs and oats extracts missed active molecules were spray applied on oat plants. The results showed that the treated plants showed stimulatory responses in growth and physiology. The treatments improved plant growth and biomass, enhanced total protein, water-soluble carbohydrates, free phenolic compounds content in oat leaves, photosynthesis, and chlorophyll contents. The treatments also improved the level of vitamins E and K, phenolic compounds, and avenanthramides C in the oat grains. Moreover, the treatments showed an improvement in the yield of oats (grain and straw) using water and alcoholic oat extracts in which the active molecules were missed. Our findings demonstrate that Cu-BTC and oats extracts can act as a biostimulant to enhance the biological and chemical properties of oats and increase the yield in calcareous soils. The cytotoxicity study of oats (produced from AE, c@Cu-BTC, and AE-c treatments) was conducted using Vero Cell lines. The anticancer activities of different oat grains were carried out using MCF 7cell lines. The results show that the grains produced from the AE, c@Cu-BTC, and AE-c treatments possessed 94.3, 72.3, and 100% activity towards the cancer cell line. Removal of growth inhibitors from spray solutions increases grain yield and anticancer activity.


Asunto(s)
Avena , Suelo , Avena/metabolismo , Suelo/química , Grano Comestible/química , Semillas , Fenoles/metabolismo
2.
J Sci Food Agric ; 101(13): 5550-5562, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33709391

RESUMEN

BACKGROUND: One of the major abiotic stressors that have a serious effect on plant growth and productivity worldwide is the salinity of soil or irrigation water. The effect of foliar application of magnetite nanoparticles (size = 22.05 nm) at different concentrations (0, 0.25, 0.5, and 1.0 ppm) was investigated to improve salinity tolerance in two wheat cultivars, namely, Misr1 (Tolerant) and Gimmeza11 (Sensitive). Moreover, toxicological investigations of magnetite oxide nanoparticle in Wistar albino rats were estimated. RESULTS: The magnetite nanoparticles positively affected growth, chlorophyll, and enzymatic antioxidants such as superoxide dismutase (SOD), stimulating reduced glutathione and improving the aggregation of several polypeptide chains that may be linked to the tolerance of saline stress. In contrast, magnetite nanoparticles reduced malondialdehyde (MDA). Inverse sequence-tagged repeat (ISTR) assay of DNA molecular marker showed the change in band numbers with the highest polymorphic bands with 90% polymorphism at primer F3, B5 and 20 positive bands in Gimmeza11 with 0.5 ppm magnetite nanoparticles. In the median lethal dose (LD50 ) study, no rats died after the oral administration of magnetite nanoparticle at different doses. Therefore, the iron oxide nanoparticle was nontoxic when administered orally by gavage. CONCLUSION: Magnetite nanoparticles partially helped to alleviate the effects of salt stress by activating growth, chlorophyll content, SOD, glutathione, and soluble proteins in two wheat cultivars (Misr1 and Gimmeza11) and decreasing MDA content. © 2021 Society of Chemical Industry.


Asunto(s)
Compuestos Férricos/farmacología , Nanopartículas de Magnetita/análisis , Estrés Oxidativo/efectos de los fármacos , Cloruro de Sodio/metabolismo , Triticum/efectos de los fármacos , Triticum/metabolismo , Animales , Clorofila/metabolismo , Compuestos Férricos/análisis , Glutatión/metabolismo , Nanopartículas de Magnetita/toxicidad , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Estrés Salino/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA