Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Antibiot (Tokyo) ; 76(11): 642-649, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37731043

RESUMEN

As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A (1), was discovered from strain MSX53339 (Herpotrichiellaceae). The structure and sequence of 1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey's method. In an in vitro assay for antimalarial potency, 1 displayed a pEC50 value of 5.75 ± 0.49 against malaria-causing Plasmodium falciparum. Compound 1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC50 value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes 1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity.


Asunto(s)
Antimaláricos , Ascomicetos , Malaria , Humanos , Antimaláricos/química , Malaria/tratamiento farmacológico , Plasmodium falciparum , Extractos Vegetales/química
2.
Int J Parasitol ; 52(11): 733-744, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35447149

RESUMEN

Malaria is a major global health problem which predominantly afflicts developing countries. Although many antimalarial therapies are currently available, the protozoan parasite causing this disease, Plasmodium spp., continues to evade eradication efforts. One biological phenomenon hampering eradication efforts is the parasite's ability to arrest development, transform into a drug-insensitive form, and then resume growth post-therapy. Currently, the mechanisms by which the parasite enters arrested development, or dormancy, and later recrudesces or reactivates to continue development, are unknown and the malaria field lacks techniques to study these elusive mechanisms. Since Plasmodium spp. salvage purines for DNA synthesis, we hypothesised that alkyne-containing purine nucleosides could be used to develop a DNA synthesis marker which could be used to investigate mechanisms behind dormancy. Using copper-catalysed click chemistry methods, we observe incorporation of alkyne modified adenosine, inosine, and hypoxanthine in actively replicating asexual blood stages of Plasmodium falciparum and incorporation of modified adenosine in actively replicating liver stage schizonts of Plasmodium vivax. Notably, these modified purines were not incorporated in dormant liver stage hypnozoites, suggesting this marker could be used as a tool to differentiate replicating and non-replicating liver forms and, more broadly, as a tool for advancing our understanding of Plasmodium dormancy mechanisms.


Asunto(s)
Fenómenos Biológicos , Malaria Vivax , Malaria , Plasmodium , Humanos , Plasmodium vivax/genética , Alquinos , Plasmodium/genética , Malaria/parasitología , Purinas , Adenosina , ADN , Malaria Vivax/parasitología
3.
J Med Chem ; 64(10): 6581-6595, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33979164

RESUMEN

Preclinical and clinical development of numerous small molecules is prevented by their poor aqueous solubility, limited absorption, and oral bioavailability. Herein, we disclose a general prodrug approach that converts promising lead compounds into aminoalkoxycarbonyloxymethyl (amino AOCOM) ether-substituted analogues that display significantly improved aqueous solubility and enhanced oral bioavailability, restoring key requirements typical for drug candidate profiles. The prodrug is completely independent of biotransformations and animal-independent because it becomes an active compound via a pH-triggered intramolecular cyclization-elimination reaction. As a proof-of-concept, the utility of this novel amino AOCOM ether prodrug approach was demonstrated on an antimalarial compound series representing a variety of antimalarial 4(1H)-quinolones, which entered and failed preclinical development over the last decade. With the amino AOCOM ether prodrug moiety, the 3-aryl-4(1H)-quinolone preclinical candidate was shown to provide single-dose cures in a rodent malaria model at an oral dose of 3 mg/kg, without the use of an advanced formulation technique.


Asunto(s)
Antimaláricos/química , Éteres/química , Profármacos/química , Quinolonas/química , Administración Oral , Animales , Antimaláricos/farmacocinética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Ciclización , Modelos Animales de Enfermedad , Femenino , Semivida , Concentración de Iones de Hidrógeno , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum/efectos de los fármacos , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Quinolonas/farmacocinética , Quinolonas/farmacología , Quinolonas/uso terapéutico , Solubilidad , Relación Estructura-Actividad
4.
Science ; 362(6419)2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523084

RESUMEN

To discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.


Asunto(s)
Antimaláricos/farmacología , Quimioprevención , Descubrimiento de Drogas , Malaria/prevención & control , Plasmodium/efectos de los fármacos , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Mitocondrias/efectos de los fármacos , Plasmodium/crecimiento & desarrollo
5.
Biomed Microdevices ; 16(5): 727-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24907052

RESUMEN

While many advanced liver models support hepatic phenotypes necessary for drug and disease studies, these models are characterized by intricate features such as co-culture with one of more supporting cell types or advanced media perfusion systems. These systems have helped elucidate some of the critical biophysical features missing from standard well-plate based hepatocyte culture, but their advanced designs add to their complexity. Additionally, regardless of the culture system, primary hepatocyte culture systems suffer from reproducibility issues due to phenotypic variation and expensive, limited supplies of donor lots. Here we describe a microfluidic bilayer device that sustains primary human hepatocyte phenotypes, including albumin production, factor IX production, cytochrome P450 3A4 drug metabolism and bile canaliculi formation for at least 14 days in a simple monoculture format with static media. Using a variety of channel architectures, we describe how primary cell phenotype is promoted by spatial confinement within the microfluidic channel, without the need for perfusion or co-culture. By sourcing human hepatocytes expanded in the Fah, Rag2, and Il2rg-knockout (FRG™-KO) humanized mouse model, utilizing a few hundred hepatocytes within each channel, and maintaining hepatocyte function for weeks in vitro within a relatively simple model, we demonstrate a basic primary human hepatocyte culture system that addresses many of the major hurdles in human hepatocyte culture research.


Asunto(s)
Técnicas de Cultivo de Célula , Proliferación Celular , Hepatocitos/metabolismo , Hígado , Técnicas Analíticas Microfluídicas , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Hep G2 , Hepatocitos/citología , Humanos , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA