Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Public Health ; 24(1): 2544, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294628

RESUMEN

OBJECTIVE: To investigate the predictors of smoking among pregnant women in Iran, focusing on health literacy and associated socioeconomic factors. METHODS: This retrospective cohort study included 103,042 pregnant women aged 18-45 years who attended healthcare centers affiliated with Mashhad University of Medical Sciences for routine prenatal and postnatal checkups between 2017 and 2020. Data were collected from the Sina Electronic Health Record System (SinaEHR®), which recorded sociodemographic characteristics, medical history, and lifestyle behaviors, including tobacco use. RESULTS: Smoking prevalence was 0.9%. Women with undergraduate or higher education had significantly lower odds of smoking (OR = 0.36; 95% CI = 0.28-0.47) compared to those with primary education or less. Maternal age was marginally associated with increased smoking risk (OR = 1.01; 95% CI = 1.00-1.03). While unemployment showed an increased crude risk for smoking, this was not significant after adjustment (adjusted OR = 1.02; 95% CI = 0.86-1.21). Strong associations were found between tobacco use and alcohol consumption (OR = 46.3; 95% CI = 24.8-83.4) and opium addiction (OR = 23.4; 95% CI = 14.5-36.3). Chronic disease history also increased smoking odds (OR = 1.51; 95% CI = 1.17-1.92). CONCLUSION: Lower education, substance use, and chronic disease are significant predictors of smoking among pregnant women in Iran. Targeted interventions to improve health literacy and address these factors are essential to reduce tobacco use during pregnancy.


Asunto(s)
Uso de Tabaco , Humanos , Femenino , Embarazo , Estudios Retrospectivos , Adulto , Adulto Joven , Irán/epidemiología , Adolescente , Uso de Tabaco/epidemiología , Persona de Mediana Edad , Factores Socioeconómicos , Prevalencia , Factores de Riesgo , Mujeres Embarazadas/psicología , Fumar/epidemiología , Alfabetización en Salud/estadística & datos numéricos
2.
Biomed Pharmacother ; 178: 117161, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047419

RESUMEN

Immunotherapy has improved cancer treatment based on investigations of tumor immune escape. Manipulation of the immune system stimulates antitumor immune responses and blocks tumor immune escape routes. Genetically adoptive cell therapy, such as T cells, has yielded promising results for hematologic malignancies, but their application to solid tumors has been challenging. Macrophages have a wide broad of capabilities in regulating immune responses, homeostasis, and tissue development, as well as the ability to phagocyte, present antigens, and infiltrate the tumor microenvironment (TME). Given the importance of macrophages in cancer development, they could serve as novel tool for tumor treatment. Therefore, macrophages are used in different formats for direct and indirect targeting of tumor cells. This review summarized the available data on the various applications of macrophages in cancer immunotherapy.


Asunto(s)
Inmunoterapia , Macrófagos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Macrófagos/inmunología , Animales , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Escape del Tumor/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
3.
Curr Pharm Des ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39021196

RESUMEN

Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.

4.
Heliyon ; 10(11): e32249, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912474

RESUMEN

Therapeutic vaccinations are designed to prevent cancer by inducing immune responses against tumor antigens. in cancer cells, tumor-associated antigens (TAA) or tumor-specific (mutated) derived peptides are presented within the clefts of main histocompatibility complex (MHC) class I or class II molecules, they either activate cytotoxic T-lymphocytes (CTLs), CD4+ T or CD8+ T lymphocytes, which release cytokines that can suppress tumor cells growth. In cancer immunotherapies, CD8+ T lymphocytes are a major mediator of tumor repression. The effect of peptide-based vaccinations on cytokines in the activating CD8+ T cell against targeted tumor antigens is the subject of this review. It is believed that peptide-based vaccines increased IFN-γ, TNF-α, IL-2, and IL-12, secreting CTL line by interacting with dendritic cell (DC), supposed to stimulate immune system. Additionally, mechanisms of CTL activation and dysfunction were also studied. According to most of the data resulted from in vivo and in vitro research works, it is assumed that peptide-based vaccines increased IFN-γ, TNF-α, IL-2, and IL-12.

5.
J Med Case Rep ; 18(1): 269, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38835078

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is the second most common type of leukemia in children. Although prognostic and diagnostic tests of AML patients have improved, there is still a great demand for new reliable clinical biomarkers for AML. Read-through fusion transcripts (RTFTs) are complex transcripts of adjacent genes whose molecular mechanisms are poorly understood. This is the first report of the presence of the PPP1R1B::STARD3 fusion transcript in an AML patient. Here, we investigated the presence of PPP1R1B::STARD3 RTFT in a case of AML using paired-end RNA sequencing (RNA-seq). CASE PRESENTATION: A Persian 12-year-old male was admitted to Dr. Sheikh Hospital of Mashhad, Iran, in September 2019 with the following symptoms, including fever, convulsions, hemorrhage, and bone pain. The patient was diagnosed with AML (non-M3-FAB subtype) based on cell morphologies and immunophenotypical features. Chromosomal analysis using the G-banding technique revealed t (9;22) (q34;q13). CONCLUSIONS: Single-cell RNA sequencing (scRNA-seq) analysis suggested that the PPP1R1B promoter may be responsible for the PPP1R1B::STARD3 expression. Alterations in the level of lipid metabolites implicate cancer development, and this fusion can play a crucial role in the cholesterol movement in cancer cells. PPP1R1B::STARD3 may be considered a candidate for targeted therapies of the cholesterol metabolic and the PI3K/AKT signaling pathways involved in cancer development and progression.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Niño , Proteína Fosfatasa 1/genética , Proteínas de Fusión Oncogénica/genética
6.
Heliyon ; 10(9): e30599, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726188

RESUMEN

Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-ß, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.

7.
BMC Public Health ; 24(1): 1081, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637741

RESUMEN

BACKGROUND: The prevalence of tobacco use among various cancer types in Iran remains a significant concern, necessitating a comprehensive analysis to understand the extent and patterns of consumption. This study aimed to systematically review and analyze existing literature to delineate the prevalence of tobacco use across different cancer types in Iran, thereby providing a robust basis for future interventions and policy formulations. METHODS: Adhering to the PRISMA guidelines, we conducted a systematic review and meta-analysis of literature available in PubMed and Scopus databases. The initial search identified 351 records, out of which 44 studies were selected based on their relevance and design. These studies spanned various time frames, starting from the 2001s up until 2022, and encompassed diverse geographical locations and cancer types in Iran. To avoid bias and potential data overlap, we opted to incorporate a single comprehensive study from the Golestan Cohort, encompassing all data, while excluding 10 other studies. Our final analysis incorporated data from 34 studies, which accounted for 15,425 patients and 5,890 reported smokers. Statistical analyses were performed to calculate the overall proportion of tobacco consumption and to conduct subgroup analyses based on different variables such as cancer types, gender, geographical locations, and types of tobacco used. RESULTS: The analysis revealed a substantial prevalence of tobacco use among cancer patients in Iran, with an overall consumption rate of 43%. This rate varied significantly, ranging from 10 to 88% across individual studies. Subgroup analyses further highlighted disparities in tobacco consumption rates across different demographics, geographic areas, and cancer types. Notably, the 'ever' smokers category exhibited the highest prevalence of tobacco use. The study also identified a worrying trend of high cigarette smoking rates, along with variable consumption patterns of other forms of tobacco, including waterpipe, 'Naas', and 'Pipe'. CONCLUSIONS: This systematic review and meta-analysis underscores a significant association between tobacco consumption and various cancer types in Iran, with a prevalence rate among cancer patients being three times higher than the average Iranian population. The findings indicate substantial heterogeneity in tobacco use patterns, emphasizing the need for targeted interventions to address this pressing health issue. The study serves as a critical resource for shaping future policies and strategies aimed at curbing tobacco use and mitigating its adverse effects on cancer prevalence in Iran.


Asunto(s)
Fumar Cigarrillos , Neoplasias , Uso de Tabaco , Humanos , Fumar Cigarrillos/epidemiología , Irán/epidemiología , Neoplasias/epidemiología , Prevalencia , Uso de Tabaco/epidemiología
8.
Curr Pharm Des ; 30(13): 975-987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500284

RESUMEN

Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal- based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.


Asunto(s)
Antineoplásicos , Neoplasias de los Genitales Femeninos , Nanopartículas , Nanotecnología , Humanos , Femenino , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Animales
9.
J Gene Med ; 26(2): e3665, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375969

RESUMEN

The lymphatic system, crucial for tissue fluid balance and immune surveillance, can be severely impacted by disorders that hinder its activities. Lymphatic malformations (LMs) are caused by fluid accumulation in tissues owing to defects in lymphatic channel formation, the obstruction of lymphatic vessels or injury to lymphatic tissues. Somatic mutations, varying in symptoms based on lesions' location and size, provide insights into their molecular pathogenesis by identifying LMs' genetic causes. In this review, we collected the most recent findings about the role of genetic and inflammatory biomarkers in LMs that control the formation of these malformations. A thorough evaluation of the literature from 2000 to the present was conducted using the PubMed and Google Scholar databases. Although it is obvious that the vascular endothelial growth factor receptor 3 mutation accounts for a significant proportion of LM patients, several mutations in other genes thought to be linked to LM have also been discovered. Also, inflammatory mediators like interleukin-6, interleukin-8, tumor necrosis factor-alpha and mammalian target of rapamycin are the most commonly associated biomarkers with LM. Understanding the mutations and genes expression responsible for the abnormalities in lymphatic endothelial cells could lead to novel therapeutic strategies based on molecular pathways.


Asunto(s)
Anomalías Linfáticas , Vasos Linfáticos , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Anomalías Linfáticas/genética , Anomalías Linfáticas/diagnóstico , Anomalías Linfáticas/patología , Vasos Linfáticos/anomalías , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Biomarcadores/metabolismo
10.
Curr Cancer Drug Targets ; 24(9): 920-929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38284712

RESUMEN

Exosomes are very small (nano-sized) vesicles participating in tumor development by involvement in intercellular communication mediated by transferring biocomponents. Exosomes appear to play vital roles in various cancer development, such as ovarian cancer, a common malignancy in women. Several hallmarks of ovarian cancer are reported to be affected by the exosomemediated cellular cross-talk, including modulating peritoneal dissemination and chemoresistance. Since the expression of some biomolecules, such as miRNAs and mRNA, is changed in ovarian cancer, these exo-biomolecules can be applied as prognostic, diagnostic, and therapeutic biomarkers. Also, the selective loading of specific chemotherapeutic agents into exosomes highlights these biocarries as potential delivery devices. Exosomes could be artificially provided and engineered to better target the site of interest in ovarian cancer. In the present review, we summarize the notable achievement of exosome application in ovarian cancer management to gain applicable transitional insight against this cancer.


Asunto(s)
Biomarcadores de Tumor , Exosomas , Neoplasias Ováricas , Humanos , Exosomas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/terapia , Femenino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , MicroARNs/genética , Antineoplásicos/uso terapéutico
11.
Curr Pharm Des ; 29(34): 2692-2701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37916491

RESUMEN

Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.


Asunto(s)
Neoplasias Ováricas , Vacunas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Interferente Pequeño , Inmunoterapia , ARN Mensajero
12.
Curr Pharm Des ; 29(34): 2684-2691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929740

RESUMEN

Prostate cancer (PC) is identified as a heterogeneous disease. About 20 to 30% of PC patients experience cancer recurrence, characterized by an increase in the antigen termed serum prostate-specific antigen (PSA). Clinical recurrence of PC commonly occurs after five years. Metastatic castration-resistant prostate cancer (mCRPC) has an intricate genomic background. Therapies that target genomic changes in DNA repair signaling pathways have been progressively approved in the clinic. Innovative therapies like targeting signaling pathways, bone niche, immune checkpoint, and epigenetic marks have been gaining promising results for better management of PC cases with bone metastasis. This review article summarizes the recent consideration of the molecular mechanisms and signaling pathways involved in local and metastatic prostate cancer, highlighting the clinical insinuations of the novel understanding.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Recurrencia Local de Neoplasia , Transducción de Señal
13.
Curr Pharm Des ; 29(38): 3018-3039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37990895

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE: Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS: In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS: The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION: This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Nanopartículas , Humanos , Oxaliplatino/uso terapéutico , Oxaliplatino/farmacología , Liposomas/uso terapéutico , Neoplasias Colorrectales/metabolismo , Calidad de Vida , Antineoplásicos/farmacología , Nanopartículas/química , Polisacáridos/uso terapéutico
14.
Crit Rev Oncol Hematol ; 189: 104068, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37468084

RESUMEN

Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.


Asunto(s)
Neoplasias Esofágicas , Edición Génica , Animales , Ratones , Humanos , Edición Génica/métodos , Ingeniería Genética , Modelos Animales de Enfermedad , Neoplasias Esofágicas/genética
15.
Pathol Res Pract ; 245: 154472, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37087995

RESUMEN

Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-ß, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.


Asunto(s)
Neoplasias Gastrointestinales , ARN Circular , Humanos , ARN Circular/genética , Transición Epitelial-Mesenquimal/genética , Fosfatidilinositol 3-Quinasas , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Transducción de Señal/genética
16.
Mol Biotechnol ; 65(3): 350-360, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35474410

RESUMEN

Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Transposasas , Animales , Humanos , Ratones , Elementos Transponibles de ADN/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Técnicas de Transferencia de Gen , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Transposasas/genética , Transposasas/metabolismo , Línea Celular Tumoral
17.
Int J Biol Macromol ; 226: 1226-1235, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36442575

RESUMEN

Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Biomarcadores de Tumor/genética , Detección Precoz del Cáncer , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , MicroARNs/genética , MicroARNs/metabolismo , Genes Supresores de Tumor , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética
18.
Mol Cell Probes ; 66: 101869, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208698

RESUMEN

BACKGROUND: Epithelial cancers acquire the epithelial to mesenchymal transition (EMT), which leads tumor cells to invade and metastasize to adjacent and distant tissues. The mechanisms involved in EMT phenotype are controlled by numerous markers as well as signalling pathways. Recently, long non-coding RNAs (lncRNAs) were introduced that play the regulatory role in EMT via crosstalk with EMT-related transcription factors and signalling pathways. The present study aimed to investigate the expression of four lncRNAs in human GC and elucidate their probable role in EMT procedure and the pathogenesis of gastric cancer (GC). METHODS: The expression profile of lncRNAs (LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2) and mRNAs (TWIST1, MMP13, MAML1, CD44s, and SALL4) between eighty-three GC and adjacent non-cancerous tissues were assessed by quantitative real-time PCR. RESULTS: The significant downregulation of LINC00365 (66.3%) and RP11-354K4.2 (62.7%) were observed in GC samples; while the upregulation of LINC01389, RP11-138J23.1, TWIST1, MMP13, MAML1, CD44s, and SALL4 were found in 67.5%, 45.8%, 56.6%, 44.6%, 59%, 55.4%, and 62.7% tumors samples at the mRNA level, respectively. Dysregulation of these lncRNAs and EMT-related markers was significantly related to each other in a variety of clinicopathological features of patients (P < 0.05), indicating positive correlations between LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2 with EMT status in GC. CONCLUSION: These EMT-regulating lncRNAs may play a key role in transforming gastric epithelial to mesenchymal phenotype and can be novel therapeutic targets for GC. Our results highlight the importance of discovering new lncRNAs involved in gastric carcinogenesis. Detailed molecular mechanisms of these noncoding-coding markers in GC are urgently required.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Transición Epitelial-Mesenquimal/genética , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo
19.
Exp Cell Res ; 406(2): 112757, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34331909

RESUMEN

BACKGROUND: Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.


Asunto(s)
Modelos Animales de Enfermedad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Ingeniería Genética/métodos , Animales , Humanos , Ratones
20.
J Mol Histol ; 52(3): 597-609, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33884540

RESUMEN

PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3, crucial immune checkpoint molecules in the tumor microenvironment, identify as key targets for cancer immunotherapy. There is a correlation between immune cells and epithelial-mesenchymal transition (EMT)-related genes expression in varies human cancers. In this study, we aimed to investigate the probable association between expression of immune checkpoints and EMT in esophageal squamous cell carcinoma (ESCC) with clinical treats for providing the new therapeutic targets and prognostic value for the disease. Quantitative real-time PCR was used to investigate the gene expression profile of immune checkpoints (PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3) and EMT (TWIST1 and MMP-13) genes based on the mRNA expression levels in 51 ESCC tissues. The upregulation of CTLA-4, PD-1, PD-L1, TIM-3, LAG-3, MMP-13, and TWIST1 were observed in 31.37%, 29.41%, 21.56%, 39.21%, 25.49%, 60.78%, and 56.86% of ESCC cases at the mRNA level, respectively. Dysregulation of immune checkpoints was related to lymph node involvement, stage of tumor progression, and depth of tumor invasion (P < 0.05). While overexpression of MMP-13 and TWIST1 was associated with lymph node involvement, stage of tumor progression, and grade of tumor differentiation (P < 0.05). The mRNA expression of immune checkpoint genes was significantly correlated to each other's (P = 0.000). Of importance, the data explored the significant association between the concomitant expression of immune checkpoints and EMT-related genes with each other in a variety of clinicopathological traits (P < 0.05). Consequently, immune checkpoints were positively correlated with EMT status in ESCC. The correlation between tumor immune microenvironment with the elevation of multiple immune checkpoints and EMT status may help to identify potential biomarkers for the simultaneous clinical use of multiple immune checkpoints blockade and other immunotherapies approaches for advanced ESCC patients.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteínas de Punto de Control Inmunitario/genética , Terapia Molecular Dirigida , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pronóstico , Mapas de Interacción de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA