Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Oncol ; 13: 1107484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776340

RESUMEN

Introduction: The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods: Experiments were performed with different LDL dosages (LDLlow = 50 µg/ml and LDLhigh = 200 µg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results: The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion: Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.

2.
Oncotarget ; 6(5): 3306-18, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25650658

RESUMEN

Inflammation contributes to important traits that cancer cells acquire during malignant progression. Gene array data recently identified upregulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in aggressive pancreatic cancer cells. IFIT3 belongs to the group of interferon stimulated genes (ISG), can be induced by several cellular stress stimuli and by its tetratricopeptide repeats interacts with a multitude of cellular proteins. Upregulation of IFIT3 was confirmed in the aggressive pancreatic cancer cell line L3.6pl compared with its less aggressive cell line of origin, COLO357FG. Transgenic induction of IFIT3 expression in COLO357FG resulted in greater mass of orthotopic tumors and higher prevalence of metastases. Several important traits that mediate malignancy were altered by IFIT3: increased VEGF and IL-6 secretion, chemoresistance and decreased starvation-induced apoptosis. IFIT3 showed binding to JNK and STAT1, the latter being an important inducer of IFIT3 expression. Despite still being alterable by "classical" IFN or NFκB signaling, our findings indicate constitutive - possibly auto-regulated - upregulation of IFIT3 in L3.6pl without presence of an adequate inflammatory stimulus. The transcription factor SOX9, which is linked to regulation of hypoxia-related genes, was identified as a key mediator of upregulation of the oncogene IFIT3 and thereby sustaining a "pseudoinflammatory" cellular condition.


Asunto(s)
Adenocarcinoma/metabolismo , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/secundario , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA