Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662719

RESUMEN

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Asunto(s)
Antivirales , Iridoides , Simulación del Acoplamiento Molecular , Olea , Extractos Vegetales , Hojas de la Planta , Polifenoles , SARS-CoV-2 , Olea/química , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Iridoides/farmacología , Iridoides/química , Humanos , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/química , Glucósidos/farmacología , Glucósidos/química , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Simulación por Computador , Tratamiento Farmacológico de COVID-19 , Luteolina/farmacología , Luteolina/química , ARN Helicasas/metabolismo , ARN Helicasas/antagonistas & inhibidores , Apigenina/farmacología , Apigenina/química
2.
PLoS One ; 19(3): e0300035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457483

RESUMEN

The development of effective drugs targeting the K-Ras oncogene product is a significant focus in anticancer drug development. Despite the lack of successful Ras signaling inhibitors, recent research has identified PDEδ, a KRAS transporter, as a potential target for inhibiting the oncogenic KRAS signaling pathway. This study aims to investigate the interactions between eight K-Ras inhibitors (deltarazine, deltaflexin 1 and 2, and its analogues) and PDEδ to understand their binding modes. The research will utilize computational techniques such as density functional theory (DFT) and molecular electrostatic surface potential (MESP), molecular docking, binding site analyses, molecular dynamic (MD) simulations, electronic structure computations, and predictions of the binding free energy. Molecular dynamic simulations (MD) will be used to predict the binding conformations and pharmacophoric features in the active site of PDEδ for the examined structures. The binding free energies determined using the MMPB(GB)SA method will be compared with the observed potency values of the tested compounds. This computational approach aims to enhance understanding of the PDEδ selective mechanism, which could contribute to the development of novel selective inhibitors for K-Ras signaling.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras) , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas p21(ras)/genética , Sitios de Unión , Dominio Catalítico
3.
J Enzyme Inhib Med Chem ; 39(1): 2292482, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38086785

RESUMEN

This study aims to investigate the phytoconstituents of the chloroform fraction of three Cystoseira spp. namely C. myrica, C. trinodis, and C. tamariscifolia using UPLC/ESI/MS technique. The results revealed the identification of 19, 20 and 11 metabolites in C. myrica, C. trinodis, and C. tamariscifolia, respectively mainly terpenoids, flavonoids, phenolic acids and fatty acids. Also, an in vitro antioxidant study using FRAP and DPPH assays was conducted where the chloroform fraction of C. trinodis displayed the highest antioxidant activity in both assays, which would be attributed to its highest total phenolics and total flavonoids. Besides, the investigation of COX-1, α-glucosidase and α-amylase inhibitory activities were performed. Regarding C. trinodis, it showed the strongest inhibitory activity towards COX-1. Moreover, it showed potent inhibitory activity towards α-glucosidase and α-amylase enzymes. According to the molecular docking studies, the major compounds characterised showed efficient binding to the active sites of the target enzymes.


Asunto(s)
Cloroformo , alfa-Glucosidasas , Simulación del Acoplamiento Molecular , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Flavonoides/química , alfa-Amilasas
4.
Biomed Pharmacother ; 167: 115596, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37797461

RESUMEN

Cyclophosphamide (CPA) is a chemotherapeutic drug used for various types of cancers. However, patients receiving CPA for long periods suffer cognitive impairment associated with difficulties in learning, decreased concentration, and impaired memory. Chemotherapy-induced cognitive impairment, known as chemobrain, has been attributed to enhanced oxidative stress and inflammatory response. The current study aimed to identify the phytoconstituents of Callistemon subulatus extract (CSE) using HPLC-ESI/MS-MS analysis and evaluate its neuroprotective activity against CPA-induced chemobrain in rats. Fourteen compounds were identified following HPLC analysis including, five phlorglucinols, four flavonol glycosides, a triterpene, and a phenolic acid. Forty rats were divided into five groups treated for ten days as follows; group I (control group), group II received CPA (200 mg/kg, i.p.) on the 7th day, groups III and IV received CSE (200 and 400 mg/kg respectively, orally) for ten days and CPA (200 mg/kg, i.p.) on the 7th day, and group V received only CSE (400 mg/kg, orally) for ten days. The administration of CSE effectively ameliorated the deleterious effects of CPA on spatial and short-term memories, as evidenced by behavioral tests, Y-maze and passive avoidance. Such findings were further confirmed by histological examination. In addition, CSE counteracted the effect of CPA on hippocampal acetylcholinesterase (AChE) activity enhancing the level of acetylcholine. Owing to the CSE antioxidant properties, it hindered the CPA-induced redox imbalance, which is represented by decreased catalase and reduced glutathione levels, as well as enhanced lipid peroxidation. Therefore, CSE may be a promising natural candidate for protection against CPA-induced chemobrain in cancer patients.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Fármacos Neuroprotectores , Humanos , Ratas , Animales , Acetilcolinesterasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Ciclofosfamida/toxicidad , Fármacos Neuroprotectores/farmacología
5.
J Alzheimers Dis ; 96(2): 827-844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899058

RESUMEN

BACKGROUND: Tyrosine-protein kinase Fyn (Fyn) is a critical signaling molecule involved in various cellular processes, including neuronal development, synaptic plasticity, and disease pathogenesis. Dysregulation of Fyn kinase has been implicated in various complex diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as different cancer types. Therefore, identifying small molecule inhibitors that can inhibit Fyn activity holds substantial significance in drug discovery. OBJECTIVE: The aim of this study was to identify potential small-molecule inhibitors among bioactive phytoconstituents against tyrosine-protein kinase Fyn. METHODS: Through a comprehensive approach involving molecular docking, drug likeliness filters, and molecular dynamics (MD) simulations, we performed a virtual screening of a natural compounds library. This methodology aimed to pinpoint compounds potentially interacting with Fyn kinase and inhibiting its activity. RESULTS: This study finds two potential natural compounds: Dehydromillettone and Tanshinone B. These compoundsdemonstrated substantial affinity and specific interactions towards the Fyn binding pocket. Their conformations exhibitedcompatibility and stability, indicating the formation of robust protein-ligand complexes. A significant array of non-covalentinteractions supported the structural integrity of these complexes. CONCLUSION: Dehydromillettone and Tanshinone B emerge as promising candidates, poised for further optimization as Fynkinase inhibitors with therapeutic applications. In a broader context, this study demonstrates the potential of computationaldrug discovery, underscoring its utility in identifying compounds with clinical significance. The identified inhibitors holdpromise in addressing a spectrum of cancer and neurodegenerative disorders. However, their efficacy and safety necessitatevalidation through subsequent experimental studies.


Asunto(s)
Fitoquímicos , Proteínas Proto-Oncogénicas c-fyn , Humanos , Enfermedad de Alzheimer , Simulación del Acoplamiento Molecular , Neoplasias , Tirosina , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Fitoquímicos/farmacología
6.
Eur J Med Chem ; 258: 115610, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37437350

RESUMEN

Acute myeloid leukemia (AML) stands as one of the most aggressive type of human cancer that can develop rapidly and thus requires immediate management. In the current study, the development of novel derivatives of pyrimido[1,2-a]benzimidazole (5a-p) as potential anti-AML agents is reported. The prepared compounds 5a-p were inspected for their in vitro anti-tumor activity at NCI-DTP and subsequently 5h was selected for full panel five-dose screening to assess its TGI, LC50 and GI50 values. Compound 5h showed effective anti-tumor activity at low micromolar concentration on all tested human cancer cell lines with GI50 range from 0.35 to 9.43 µM with superior sub-micromolar activity towards leukemia. Furthermore, pyrimido[1,2-a]benzimidazoles 5e-l were tested on a panel ofhuman acute leukemia cell lines, namely HL60, MOLM-13, MV4-11, CCRF-CEM and THP-1, where 5e-h reached single-digit micromolar GI50 values for all the tested cell lines. All prepared compounds were first tested for inhibitory action against the leukemia-associated mutant FLT3-ITD, as well as against ABL, CDK2, and GSK3 kinases, in order to identify the kinase target for the herein described pyrimido[1,2-a]benzimidazoles. However, the examined molecules disclosed non-significant activity against these kinases. Thereafter, a kinase profiling on a panel of 338 human kinases was then used to discover the potential target. Interestingly, pyrimido[1,2-a]benzimidazoles 5e and 5h significantly inhibited BMX kinase. Further investigation for the effect on cell cycle of HL60 and MV4-11 cells and caspase 3/7 activity was also performed. In addition, the changes in selected proteins (PARP-1, Mcl-1, pH3-Ser10) associated with cell death and viability were analyzed in HL60 and MV4-11 cells by immunoblotting.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Apoptosis , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Tirosina Quinasa 3 Similar a fms , Glucógeno Sintasa Quinasa 3 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Inhibidores de Proteínas Quinasas
7.
J Enzyme Inhib Med Chem ; 38(1): 2224944, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37369580

RESUMEN

Callistemon is an aromatic genus of flowering plants belonging to family Myrtaceae. The essential oils of C. subulatus leaves were collected in four seasons and analyzed using GC/MS. The oils demonstrated monoterpenes as the predominant class. Eucalyptol was the main component in all seasons; summer (66.87%), autumn (58.33%), winter (46.74%) and spring (44.63%), followed by α-pinene; spring (31.41%), winter (28.69%), summer (26.34%) and autumn (24.68%). Winter oil, the highest yield (0.53 mL/100g), was further investigated for its inhibitory activity against enzymes associated with ageing; elastase and acetylcholinesterase. It remarkably inhibited elastase and acetylcholinesterase with IC50 values of 1.05 and 0.20 µg/ml, respectively. A molecular docking study was conducted for the major oil components on the active sites of target enzymes. Eucalyptol revealed the best binding affinity for both enzymes. C. subualtus oil could be used as supplement for management of ageing disorders like skin wrinkles and dementia.


Asunto(s)
Myrtaceae , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/análisis , Aceites Volátiles/química , Estaciones del Año , Acetilcolinesterasa , Eucaliptol/farmacología , Eucaliptol/análisis , Egipto , Simulación del Acoplamiento Molecular , Hojas de la Planta/química , Myrtaceae/química , Elastasa Pancreática
8.
Nutrients ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049544

RESUMEN

Cancer is a hard-to-treat disease with a high reoccurrence rate that affects health and lives globally. The condition has a high occurrence rate and is the second leading cause of mortality after cardiovascular disorders. Increased research and more profound knowledge of the mechanisms contributing to the disease's onset and progression have led to drug discovery and development. Various drugs are on the market against cancer; however, the drugs face challenges of chemoresistance. The other major problem is the side effects of these drugs. Therefore, using complementary and additional medicines from natural sources is the best strategy to overcome these issues. The naturally occurring phytochemicals are a vast source of novel drugs against various ailments. The modes of action by which phytochemicals show their anti-cancer effects can be the induction of apoptosis, the onset of cell cycle arrest, kinase inhibition, and the blocking of carcinogens. This review aims to describe different phytochemicals, their classification, the role of phytochemicals as anti-cancer agents, the mode of action of phytochemicals, and their role in various types of cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Fitoquímicos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Humanos , Neoplasias/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
9.
J Enzyme Inhib Med Chem ; 38(1): 2185761, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36912230

RESUMEN

Hepatocellular carcinoma is considered one of the most lethal cancers, which is characterised by increasing prevalence associated with high level of invasion and metastasis. The novel synthetic pyrazolo[3,4-b]pyridine compound, WRH-2412, was reported to exhibit in vitro antitumor activity. This study was conducted to evaluate the antitumor activity of WRH-2412 in HCC induced in rats through affecting the TGF-ß/ß-catenin/α-SMA pathway. Antitumor activity of WRH-2412 was evaluated by calculating the rat's survival rate and by assessment of serum α-fetoprotein. Protein expression of TGF-ß, ß-catenin, E-cadherin, fascin and gene expression of SMAD4 and α-SMA were determined in hepatic tissue of rats. WRH-2412 produced antitumor activity by significantly increasing the rats' survival rate and decreasing serum α-fetoprotein. WRH-2412 significantly reduced an HCC-induced increase in hepatic TGF-ß, ß-catenin, SMAD4, fascin and α-SMA expression. In addition, WRH-2412 significantly increased hepatic E-cadherin expression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/patología , Factor de Crecimiento Transformador beta/metabolismo , beta Catenina/metabolismo , Cateninas , alfa-Fetoproteínas , Neoplasias Hepáticas/patología , Cadherinas/genética , Cadherinas/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
10.
J Enzyme Inhib Med Chem ; 38(1): 176-191, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36317648

RESUMEN

Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Chlorocebus aethiops , Humanos , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Células Vero , Células CACO-2 , Neoplasias Pulmonares/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Relación Estructura-Actividad , Mutación , Pirimidinas/farmacología , Piridinas/farmacología , Estructura Molecular
11.
Nat Prod Res ; 37(9): 1550-1556, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35232302

RESUMEN

Phytochemical analyses of the chloroform extract of Piper betle L. var. Sanchi, Piperaceae, leaves led to the isolation of a new phenylpropanoid analogue for the first time: hydroxychavicol dimer, 2-(γ'-hydroxychavicol)-hydroxychavicol (S1), on the basis of spectroscopic data 1 D (1H and 13C) and 2 D (1H-1H COSY and HMBC) NMR, as well as ESI-MS, FT-IR, HR-ESI-MS and LC-ESI-MS. Compound S1 exhibited excellent antioxidant DPPH radical scavenging activity with IC50 values of 9.07 µg/mL, compared to ascorbic acid as a standard antioxidant drug with IC50 value of 3.41 µg/mL. Evaluation of cytotoxic activity against two human colon cancer cell lines (HT 29 and COLO-205) showed significant effect with GI50 values of 73.81 and 64.02 µmol/L, compared to Doxorubicin® as a standard cytotoxic drug with GI50 value of <10 µmol/L.


Asunto(s)
Antineoplásicos , Piper betle , Humanos , Antioxidantes/química , Piper betle/química , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Antineoplásicos/análisis , Hojas de la Planta/química
12.
Nat Prod Res ; 37(3): 514-521, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34612773

RESUMEN

The effect of extracting solvents used by two methods on the TPC, TFC, antioxidant as well as lipoxygenase, and tyrosinase inhibition activities of O. ficus-indica fruit (peel and pulp) were studied. The results manifest that extracts with solvent polarities showed different levels of polyphenols contents and antioxidant activities. The extracts acquired by the Soxhlet method were the most fascinating. Interestingly, peel extracts contain more polyphenols than pulp and showed activities. Lipoxygenase and tyrosinase inhibitory activity of the fruit peel and pulp extracts was reported for the first time. The promising results obtained prompted to the formulation of a stable phytocosmetic emulsion system loaded with 1% pre-concentrated peel extract, aiming to revive facial skin properties. The efficacy of the formulations was determined through SPF and UVA protection factors. To the in vitro safety assessment CAM-TBS, HET-CAM, and red blood cell tests were achieved. Importantly, the formulation did not induce any toxicity.


Asunto(s)
Opuntia , Polifenoles , Polifenoles/análisis , Antioxidantes/farmacología , Monofenol Monooxigenasa , Frutas/química , Flavonoides/farmacología , Solventes , Lipooxigenasa , Arabia Saudita , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA