Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Aust J Chem ; 76(8): 482-492, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37780415

RESUMEN

The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/ß-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/ß-peptides contained cyclic ß-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.

2.
Biochem J ; 478(13): 2697-2713, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133730

RESUMEN

During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.


Asunto(s)
Aminopeptidasas/metabolismo , Péptidos/metabolismo , Plasmodium/enzimología , Proteínas Protozoarias/metabolismo , Aminopeptidasas/clasificación , Aminopeptidasas/genética , Animales , Biocatálisis/efectos de los fármacos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Leucina/análogos & derivados , Leucina/farmacología , Malaria/parasitología , Ratones , Plasmodium/genética , Plasmodium/fisiología , Plasmodium berghei/enzimología , Plasmodium berghei/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium vivax/enzimología , Plasmodium vivax/genética , Inhibidores de Proteasas/farmacología , Proteínas Protozoarias/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
3.
J Biol Chem ; 296: 100173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33303633

RESUMEN

M17 leucyl aminopeptidases are metal-dependent exopeptidases that rely on oligomerization to diversify their functional roles. The M17 aminopeptidases from Plasmodium falciparum (PfA-M17) and Plasmodium vivax (Pv-M17) function as catalytically active hexamers to generate free amino acids from human hemoglobin and are drug targets for the design of novel antimalarial agents. However, the molecular basis for oligomeric assembly is not fully understood. In this study, we found that the active site metal ions essential for catalytic activity have a secondary structural role mediating the formation of active hexamers. We found that PfA-M17 and Pv-M17 exist in a metal-dependent dynamic equilibrium between active hexameric species and smaller inactive species that can be controlled by manipulating the identity and concentration of metals available. Mutation of residues involved in metal ion binding impaired catalytic activity and the formation of active hexamers. Structural resolution of Pv-M17 by cryoelectron microscopy and X-ray crystallography together with solution studies revealed that PfA-M17 and Pv-M17 bind metal ions and substrates in a conserved fashion, although Pv-M17 forms the active hexamer more readily and processes substrates faster than PfA-M17. On the basis of these studies, we propose a dynamic equilibrium between monomer ↔ dimer ↔ tetramer ↔ hexamer, which becomes directional toward the large oligomeric states with the addition of metal ions. This sophisticated metal-dependent dynamic equilibrium may apply to other M17 aminopeptidases and underpin the moonlighting capabilities of this enzyme family.


Asunto(s)
Aminopeptidasas/química , Manganeso/química , Plasmodium falciparum/enzimología , Plasmodium vivax/enzimología , Multimerización de Proteína , Proteínas Protozoarias/química , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Dominio Catalítico , Cationes Bivalentes , Clonación Molecular , Cobalto/química , Cobalto/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dipéptidos/química , Dipéptidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Magnesio/química , Magnesio/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Mutación , Plasmodium falciparum/genética , Plasmodium vivax/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
4.
Biochimie ; 166: 38-51, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30654132

RESUMEN

The family of M17 aminopeptidases (alias 'leucine aminopeptidases', M17-LAPs) utilize a highly conserved hexameric structure and a binuclear metal center to selectively remove N-terminal amino acids from short peptides. However, M17-LAPs are responsible for a wide variety of functions that are seemingly unrelated to proteolysis. Herein, we aimed to investigate the myriad of functions attributed to M17. Further, we attempted to differentiate between the different molecular mechanisms that allow the conserved hexameric structure of an M17-LAP to mediate such diverse functions. We have provided an overview of research that identifies precise physiological roles of M17-LAPs, and the distinct mechanisms by which the enzymes moderate those roles. The review shows that the conserved hexameric structure of the M17-LAPs has an extraordinary capability to moderate different molecular mechanisms. We have broadly categorized these mechanisms as 'aminopeptidase-based', which include the characteristic proteolysis reactions, and 'association-driven', which involves moderation of the molecule's macromolecular assembly and higher order complexation events. The different molecular mechanisms are capable of eliciting very different cellular outcomes, and must be regarded as distinct when the physiological roles of this large and important family are considered.


Asunto(s)
Bacterias/enzimología , Eucariontes/enzimología , Leucil Aminopeptidasa/química , Leucil Aminopeptidasa/fisiología , Animales , Dominio Catalítico , Humanos , Metales/metabolismo , Modelos Moleculares , Especificidad por Sustrato
5.
FEBS J ; 284(10): 1473-1488, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28075056

RESUMEN

M1 aminopeptidase enzymes are a diverse family of metalloenzymes characterized by conserved structure and reaction specificity. Excluding viruses, M1 aminopeptidases are distributed throughout all phyla, and have been implicated in a wide range of functions including cell maintenance, growth and development, and defense. The structure and catalytic mechanism of M1 aminopeptidases are well understood, and make them ideal candidates for the design of small-molecule inhibitors. As a result, many research groups have assessed their utility as therapeutic targets for both infectious and chronic diseases of humans, and many inhibitors with a range of target specificities and potential therapeutic applications have been developed. Herein, we have aimed to address these studies, to determine whether the family of M1 aminopeptidases does in fact present a universal target for the treatment of a diverse range of human diseases. Our analysis indicates that early validation of M1 aminopeptidases as therapeutic targets is often overlooked, which prevents the enzymes from being confirmed as drug targets. This validation cannot be neglected, and needs to include a thorough characterization of enzymes' specific roles within complex physiological pathways. Furthermore, any chemical probes used in target validation must be carefully designed to ensure that specificity over the closely related enzymes has been achieved. While many drug discovery programs that target M1 aminopeptidases remain in their infancy, certain inhibitors have shown promise for the treatment of a range of conditions including malaria, hypertension, and cancer.


Asunto(s)
Aminopeptidasas/metabolismo , Animales , Antimaláricos/farmacología , Antineoplásicos/farmacología , Descubrimiento de Drogas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA