Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Intervalo de año de publicación
1.
Drug Res (Stuttg) ; 74(5): 227-240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830371

RESUMEN

PURPOSE: Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS: The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS: The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION: Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.


Asunto(s)
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Células A549 , Tiazolidinas/farmacología , Tiazolidinas/química , Tiazolidinas/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA