Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105725, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325743

RESUMEN

The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.


Asunto(s)
Proteínas 14-3-3 , 3',5'-AMP Cíclico Fosfodiesterasas , Proteínas Quinasas Dependientes de AMP Cíclico , Sistema de Señalización de MAP Quinasas , Humanos , Proteínas 14-3-3/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo
2.
Mol Biol Cell ; 32(17): 1579-1593, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34161122

RESUMEN

A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.


Asunto(s)
Péptidos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Ataxina-3/metabolismo , Drosophila , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Péptidos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
ACS Chem Neurosci ; 10(5): 2229-2236, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30855940

RESUMEN

Altered intestinal permeability has been correlated with Parkinson's pathophysiology in the enteric nervous system, before manifestations in the central nervous system (CNS). The inflammatory endotoxin or lipopolysaccharide (LPS) released by gut bacteria is known to modulate α-synuclein amyloidogenesis through the formation of intermediate nucleating species. Here, biophysical techniques in conjunction with microscopic images revealed the molecular interaction between lipopolysaccharide and α-synuclein that induce rapid nucleation events. This heteromolecular interaction stabilizes the α-helical intermediates in the α-synuclein aggregation pathway. Multitude NMR studies probed the residues involved in the LPS-binding structural motif that modulates the nucleating forms, affecting the cellular internalization and associated cytotoxicity. Collectively, our data characterizes this heteromolecular interaction associated with an alternative pathway in Parkinson's disease progression.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Lipopolisacáridos/farmacología , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Sistema Nervioso Entérico/metabolismo , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Permeabilidad
4.
J Biol Chem ; 291(47): 24579-24593, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27703006

RESUMEN

CRAF kinase maintains cell viability, growth, and proliferation by participating in the MAPK pathway. Unlike BRAF, CRAF requires continuous chaperoning by Hsp90 to retain MAPK signaling. However, the reason behind the continuous association of Hsp90 with CRAF is still elusive. In this study, we have identified the bipartite role of Hsp90 in chaperoning CRAF kinase. Hsp90 facilitates Ser-621 phosphorylation of CRAF and prevents the kinase from degradation. Co-chaperone Cdc37 assists in this phosphorylation event. However, after folding, the stability of the kinase becomes insensitive to Hsp90 inhibition, although the physical association between Hsp90 and CRAF remains intact. We observed that overexpression of Hsp90 stimulates MAPK signaling by activating CRAF. The interaction between Hsp90 and CRAF is substantially increased under an elevated level of cellular Hsp90 and in the presence of either active Ras (RasV12) or EGF. Surprisingly, enhanced binding of Hsp90 to CRAF occurs prior to the Ras-CRAF association and facilitates actin recruitment to CRAF for efficient Ras-CRAF interaction, which is independent of the ATPase activity of Hsp90. However, monomeric CRAF (CRAFR401H) shows abrogated interaction with both Hsp90 and actin, thereby affecting Hsp90-dependent CRAF activation. This finding suggests that stringent assemblage of Hsp90 keeps CRAF kinase equipped for participating in the MAPK pathway. Thus, the role of Hsp90 in CRAF maturation and activation acts as a limiting factor to maintain the function of a strong client like CRAF kinase.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sustitución de Aminoácidos , Activación Enzimática/fisiología , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Humanos , Mutación Missense , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-raf/genética
5.
PLoS One ; 10(8): e0135976, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26295714

RESUMEN

Phosphorylation at the C-terminal flexible region of the C-Raf protein plays an important role in regulating its biological activity. Auto-phosphorylation at serine 621 (S621) in this region maintains C-Raf stability and activity. This phosphorylation mediates the interaction between C-Raf and scaffold protein 14-3-3ζ to activate the downstream MEK kinase pathway. In this study, we have defined the interaction of C-terminal peptide sequence of C-Raf with 14-3-3ζ protein and determined the possible structural adaptation of this region. Biophysical elucidation of the interaction was carried out using phosphopeptide (residue number 615-630) in the presence of 14-3-3ζ protein. Using isothermal titration calorimetry (ITC), a high binding affinity with micro-molar range was found to exist between the peptide and 14-3-3ζ protein, whereas the non-phosphorylated peptide did not show any appreciable binding affinity. Further interaction details were investigated using several biophysical techniques such as circular dichroism (CD), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy, in addition to molecular modeling. This study provides the molecular basis for C-Raf C-terminal-derived phosphopeptide interaction with 14-3-3ζ protein as well as structural insights responsible for phosphorylated S621-mediated 14-3-3ζ binding at an atomic resolution.


Asunto(s)
Proteínas 14-3-3/química , Péptidos/química , Proteínas Proto-Oncogénicas c-raf/química , Proteínas 14-3-3/genética , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Péptidos/síntesis química , Fosforilación , Docilidad , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinámica
6.
Mol Biol Cell ; 26(9): 1583-600, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25739454

RESUMEN

Hsp70 aids in protein folding and directs misfolded proteins to the cellular degradation machinery. We describe discrete roles of Hsp70,SSA1 as an important quality-control machinery that switches functions to ameliorate the cellular environment. SSA1 facilitates folding/maturation of newly synthesized protein kinases by aiding their phosphorylation process and also stimulates ubiquitylation and degradation of kinases in regular protein turnover or during stress when kinases are denatured or improperly folded. Significantly, while kinases accumulate as insoluble inclusions upon SSA1 inhibition, they form soluble inclusions upon Hsp90 inhibition or stress foci during heat stress. This suggests formation of inclusion-specific quality-control compartments under various stress conditions. Up-regulation of SSA1 results in complete removal of these inclusions by the proteasome. Elevation of the cellular SSA1 level accelerates kinase turnover and protects cells from proteotoxic stress. Upon overexpression, SSA1 targets heat-denatured kinases toward degradation, which could enable them to recover their functional state under physiological conditions. Thus active participation of SSA1 in the degradation of misfolded proteins establishes an essential role of Hsp70 in deciding client fate during stress.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas HSP70 de Choque Térmico/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Fosforilación , Pliegue de Proteína , Proteolisis , Ubiquitinación
7.
Methods Mol Biol ; 787: 75-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21898228

RESUMEN

Molecular chaperones promote polypeptide folding in cells by protecting newly made and otherwise misfolded proteins against aggregation or degradation by the ubiquitin proteasome pathway. The roles of Saccharomyces cerevisiae Cdc37 and Ydj1 molecular chaperones are described in this chapter. We focus on biogenesis of protein kinases that require several different molecular chaperones for their proper folding. Specific among these is Cdc37, which binds directly to its kinase clients either during or shortly after translation and protects them against rapid proteasomal degradation. Ydj1 has a similar role, but is less specific for protein kinases in its role as a molecular chaperone. The method that we describe uses pulse chase and immunoprecipitation to analyze the fate of newly made proteins. Two kinetically distinct pathways of degradation can be discerned using this methodology that is dependent on the presence of an Hsp90 inhibitor or occurs in mutants of the molecular chaperones under study. The first is "zero-point" degradation that occurs either during or immediately after translation. The second is a slower pathway, where the half-life of kinase is approximately 20 min after translation.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Pliegue de Proteína , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
8.
Mol Biol Cell ; 21(13): 2102-16, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20462952

RESUMEN

Quality control systems facilitate polypeptide folding and degradation to maintain protein homeostasis. Molecular chaperones promote folding, whereas the ubiquitin/proteasome system mediates degradation. We show here that Saccharomyces cerevisiae Ubr1 and Ubr2 ubiquitin ligases promote degradation of unfolded or misfolded cytosolic polypeptides. Ubr1 also catalyzes ubiquitinylation of denatured but not native luciferase in a purified system. This activity is based on the direct interaction of denatured luciferase with Ubr1, although Hsp70 stimulates polyubiquitinylation of the denatured substrate. We also report that loss of Ubr1 and Ubr2 function suppressed the growth arrest phenotype resulting from chaperone mutation. This correlates with increased protein kinase maturation and indicates partitioning of foldable conformers toward the proteasome. Our findings, based on the efficiency of this quality control system, suggest that the cell trades growth potential to avert the potential toxicity associated with accumulation of unfolded or misfolded proteins. Ubr1 and Ubr2 therefore represent E3 components of a novel quality control pathway for proteins synthesized on cytosolic ribosomes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Luciferasas de Luciérnaga/metabolismo , Péptidos/química , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Mol Cell Biol ; 28(13): 4434-44, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18443039

RESUMEN

Ydj1 is a Saccharomyces cerevisiae Hsp40 molecular chaperone that functions with Hsp70 to promote polypeptide folding. We identified Ydj1 as being important for maintaining steady-state levels of protein kinases after screening several chaperones and cochaperones in gene deletion mutant strains. Pulse-chase analyses revealed that a portion of Tpk2 kinase was degraded shortly after synthesis in a ydj1Delta mutant, while the remainder was capable of maturing but with reduced kinetics compared to the wild type. Cdc28 maturation was also delayed in the ydj1Delta mutant strain. Ydj1 protects nascent kinases in different contexts, such as when Hsp90 is inhibited with geldanamycin or when CDC37 is mutated. The protective function of Ydj1 is due partly to its intrinsic chaperone function, but this is minor compared to the protective effect resulting from its interaction with Hsp70. SIS1, a type II Hsp40, was unable to suppress defects in kinase accumulation in the ydj1Delta mutant, suggesting some specificity in Ydj1 chaperone action. However, analysis of chimeric proteins that contained the chaperone modules of Ydj1 or Sis1 indicated that Ydj1 promotes kinase accumulation independently of its client-binding specificity. Our results suggest that Ydj1 can both protect nascent chains against degradation and control the rate of kinase maturation.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Estabilidad de Enzimas , Eliminación de Gen , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Solubilidad
10.
Mol Cell Endocrinol ; 268(1-2): 67-74, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17336451

RESUMEN

The mechanisms underlying androgen receptor (AR)-mediated progression of prostate cancer following androgen ablation have yet to be fully determined. On this basis we screened naturally occurring mutants of human AR for hormone-independent activity using a yeast model system. An initial screen of 43 different mutants revealed that ARs having a Leu701His mutation (AR(L701H)) exhibited hormone-independent activation of a lacZ reporter gene. The AR(L701H) mutant bound dihydrotestosterone to a similar extent as did wild type AR, although its ability to be induced by hormone for transactivation was reduced substantially. Subsequent studies focused on the dependence of AR(L701H) on molecular chaperones for folding to the active state. We found that AR(L701H) was highly dependent on Hsp90 for its hormone-independent activation, suggesting that this chaperone functions in AR(L701H) folding. However, the mutant did not respond specifically to increased levels of FKBP52, suggesting that this chaperone functions at the hormone-dependent activation stage in the folding process. Further studies of AR(L701H) in PC3 cells suggested that this mutant is prohibited from hormone-independent transactivation in mammalian cells. However, basal expression of a reporter gene by AR(L701H) was not impaired by the presence of 17-allylamino-17-demethoxygeldanamycin as was wild type AR, suggesting differential interactions of these receptors with molecular chaperones in animal cells.


Asunto(s)
Andrógenos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Histidina/genética , Leucina/genética , Mutación/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Humanos , Ligandos , Masculino , Proteínas Mutantes/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Estructura Terciaria de Proteína , Receptores Androgénicos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/genética , Levaduras
11.
Trends Cell Biol ; 17(2): 87-92, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17184992

RESUMEN

The Hsp90-Cdc37 chaperone pair has special responsibility for folding of protein kinases. This function has made Hsp90 a target for new chemotherapeutic approaches, and several compounds are currently being tested for their ability to inhibit many different kinases simultaneously. Not all kinases are sensitive to these inhibitors, however, and this difference might depend on how each kinase interacts with Hsp90 and Cdc37 during folding of the nascent chain and thereafter. Indeed, several kinases require the persistent presence of both chaperones after initial folding and some of these kinases seem to be particularly sensitive to Hsp90 inhibitors. This requirement might relate to conformational changes that take place during the protein kinase activity cycle.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Chaperoninas/fisiología , Proteínas HSP90 de Choque Térmico/fisiología , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Benzoquinonas/farmacología , Dominio Catalítico , Activación Enzimática , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Hidrólisis , Lactamas Macrocíclicas/farmacología , Mamíferos/metabolismo , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Levaduras/metabolismo
12.
Biochim Biophys Acta ; 1768(3): 495-501, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17064659

RESUMEN

CopA, a thermophilic ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu(+) across the cell membrane. Millimolar concentration of Cys dramatically increases ( congruent with 800%) the activity of CopA and other P(IB)-type ATPases (Escherichia coli ZntA and Arabidopsis thaliana HMA2). The high affinity of CopA for metal ( congruent with 1 microM) together with the low Cu(+)-Cys K(D) (<10(-10)M) suggested a multifaceted interaction of Cys with CopA, perhaps acting as a substitute for the Cu(+) chaperone protein present in vivo. To explain the activation by the amino acid and further understand the mechanism of metal delivery to transport ATPases, Cys effects on the turnover and partial reactions of CopA were studied. 2-20 mM Cys accelerates enzyme turnover with little effect on CopA affinity for Cu(+), suggesting a metal independent activation. Furthermore, Cys activates the p-nitrophenyl phosphatase activity of CopA, even though this activity is metal independent. Cys accelerates enzyme phosphorylation and the forward dephosphorylation rates yielding higher steady state phosphoenzyme levels. The faster dephosphorylation would explain the higher enzyme turnover in the presence of Cys. The amino acid has no significant effect on low affinity ATP K(m) suggesting no changes in the E(1)<-->E(2) equilibrium. Characterization of Cu(+) transport into sealed vesicles indicates that Cys acts on the cytoplasmic side of the enzyme. However, the Cys activation of truncated CopA lacking the N-terminal metal binding domain (N-MBD) indicates that activation by Cys is independent of the regulatory N-MBD. These results suggest that Cys is a non-essential activator of CopA, interacting with the cytoplasmic side of the enzyme while this is in an E1 form. Interestingly, these effects also point out that Cu(+) can reach the cytoplasmic opening of the access path into the transmembrane transport sites either as a free metal or a Cu(+)-Cys complex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Archaeoglobus fulgidus/enzimología , Proteínas de Transporte de Catión/metabolismo , Cisteína/metabolismo , Adenosina Trifosfatasas/aislamiento & purificación , Proteínas de Transporte de Catión/aislamiento & purificación , ATPasas Transportadoras de Cobre , Activación Enzimática , Proteínas de Escherichia coli
13.
J Biol Chem ; 281(16): 11161-6, 2006 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16495228

RESUMEN

The P-type ATPases translocate cations across membranes using the energy provided by ATP hydrolysis. CopA from Archaeoglobus fulgidus is a hyperthermophilic ATPase responsible for the cellular export of Cu+ and is a member of the heavy metal P1B-type ATPase subfamily, which includes the related Wilson and Menkes diseases proteins. The Cu+-ATPases are distinct from their P-type counter-parts in ion binding sequences, membrane topology, and the presence of cytoplasmic metal binding domains, suggesting that they employ alternate forms of regulation and novel mechanisms of ion transport. To gain insight into Cu+-ATPase function, the structure of the CopA ATP binding domain (ATPBD) was determined to 2.3 A resolution. Similar to other P-type ATPases, the ATPBD includes nucleotide binding (N-domain) and phosphorylation (P-domain) domains. The ATPBD adopts a closed conformation similar to the nucleotide-bound forms of the Ca2+-ATPase. The CopA ATPBD is much smaller and more compact, however, revealing the minimal elements required for ATP binding, hydrolysis, and enzyme phosphorylation. Structural comparisons to the AMP-PMP-bound form of the Escherichia coli K+-transporting Kdp-ATPase and to the Wilson disease protein N-domain indicate that the five conserved N-domain residues found in P1B-type ATPases, but not in the other families, most likely participate in ATP binding. By contrast, the P-domain includes several residues conserved among all P-type ATPases. Finally, the CopA ATPBD structure provides a basis for understanding the likely structural and functional effects of various mutations that lead to Wilson and Menkes diseases.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Archaeoglobus fulgidus/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Calcio/metabolismo , Proteínas de Transporte de Catión/química , Clonación Molecular , Cobre/química , Cobre/metabolismo , Citoplasma/metabolismo , Escherichia coli/metabolismo , Degeneración Hepatolenticular/metabolismo , Humanos , Hidrólisis , Síndrome del Pelo Ensortijado/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Potasio/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
14.
J Biol Chem ; 279(52): 54802-7, 2004 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-15494391

RESUMEN

P(IB)-type ATPases have an essential role maintaining copper homeostasis. Metal transport by these membrane proteins requires the presence of a transmembrane metal occlusion/binding site. Previous studies showed that Cys residues in the H6 transmembrane segment are required for metal transport. In this study, the participation in metal binding of conserved residues located in transmembrane segments H7 and H8 was tested using CopA, a model Cu(+)-ATPase from Archaeoglobus fulgidus. Four invariant amino acids in the central portion of H7 (Tyr(682) and Asn(683)) and H8 (Met(711) and Ser(715)) were identified as required for Cu(+) binding. Replacement of these residues abolished enzyme activity. These proteins did not undergo Cu(+)-dependent phosphorylation by ATP but were phosphorylated by P(i) in the absence of Cu(+). Moreover, the presence of Cu(+) could not prevent the enzyme phosphorylation by P(i). Other conserved residues in the H7-H8 region were not required for metal binding. Mutation of two invariant Pro residues had little effect on enzyme function. Replacement of residues located close to the cytoplasmic end of H7-H8 led to inactive enzymes. However, these were able to interact with Cu(+) and undergo phosphorylation. This suggests that the integrity of this region is necessary for conformational transitions but not for ligand binding. These data support the presence of a unique transmembrane Cu(+) binding/translocation site constituted by Tyr-Asn in H7, Met and Ser in H8, and two Cys in H6 of Cu(+)-ATPases. The likely Cu(+) coordination during transport appears distinct from that observed in Cu(+) chaperone proteins or catalytic/redox metal binding sites.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/enzimología , Metales/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Archaeoglobus fulgidus/enzimología , Asparagina , Sitios de Unión , Proteínas de Transporte de Catión/genética , Secuencia Conservada , Cobre/metabolismo , Cobre/farmacología , ATPasas Transportadoras de Cobre , Metionina , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Fosfatos/metabolismo , Fosforilación , Serina , Relación Estructura-Actividad , Tirosina
15.
Biochemistry ; 42(37): 11040-7, 2003 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-12974640

RESUMEN

CopA, a thermophilic membrane ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu(+) or Ag(+) [Mandal et al. (2002) J. Biol. Chem. 277, 7201-7208]. This, as other P(IB)-ATPases, is characterized by a putative metal binding sequence (C(380)PC(382)) in its sixth transmembrane fragment and cytoplasmic metal binding sequences in its NH(2)- and COOH-terminal ends (C(27)AMC(30) and C(751)HHC(754)). Using isolated CopA, we have studied the functional role of these three putative metal binding domains. Replacement of transmembrane Cys residues by Ala results in nonfunctional enzymes that are unable to hydrolyze ATP. However, the CPC --> APA substituted enzyme binds ATP, indicating its correct folding and suggesting that enzyme turnover is prevented by the lack of metal binding to the transmembrane site. Replacement of C-terminal Cys by Ala (C(751,754)A) has no significant effect on ATPase activity, enzyme phosphorylation, apparent binding affinities of ligands, or E1-E2 equilibrium. In contrast, replacement of Cys in the N-terminal metal binding domain (N-MBD) (C(27,30)A) leads to 40% reduction in enzyme turnover. The C(27,30)A enzyme binds Cu(+), Ag(+), and ATP with the same high apparent affinities as the wild-type CopA. Evidence that N-MBD disruption has no effect on the E1-E2 equilibrium is provided by the normal interaction of ATP acting with low affinity and the unaffected IC(50) for vanadate inhibition observed in the C(27,30)A-substituted enzyme. However, replacement C(27,30)A slowed the dephosphorylation of the E2P(metal) form of the enzyme, suggesting a reduction in the rate of metal release. Other investigators have shown the Cu-dependent interaction of isolated N-MBDs from the Wilson disease Cu-ATPase with the ATP binding cytoplasmic domain [Tsivkovskii et al. (2001) J. Biol. Chem. 276, 2234-2242]. Therefore, the data suggest a regulatory mechanism in which the Cu-dependent N-MBD/ATP binding domain interaction would accelerate cation release, the enzyme rate-limiting step, and consequently Cu(+) transport.


Asunto(s)
Adenosina Trifosfatasas/química , Archaeoglobus fulgidus/metabolismo , Proteínas Bacterianas/química , Metales/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Sitios de Unión , Proteínas de Transporte de Catión/química , Cobre/química , ATPasas Transportadoras de Cobre , Cisteína/química , Citoplasma/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Cinética , Ligandos , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Tripsina/farmacología , Vanadatos/farmacología
16.
J Biol Chem ; 278(42): 40534-41, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-12876283

RESUMEN

P1B-type ATPases transport heavy metal ions across cellular membranes. Archaeoglobus fulgidus CopB is a member of this subfamily. We have cloned, expressed in Escherichia coli, and functionally characterized this enzyme. CopB and its homologs are distinguished by a metal binding sequence Cys-Pro-His in their sixth transmembrane segment (H6) and a His-rich N-terminal metal binding domain (His-N-MBD). CopB is a thermophilic protein active at 75 degrees C and high ionic strength. It is activated by Cu2+ with high apparent affinity (K1/2 = 0.28 microm) and partially by Cu+ and Ag+ (22 and 55%, respectively). The higher turnover was associated with a faster phosphorylation rate in the presence of Cu2+. A truncated CopB lacking the first 54 amino acids was constructed to characterize the His-N-MBD. This enzyme showed reduced ATPase activity (50% of wild type) but no changes in metal selectivity, ATP dependence, or phosphorylation levels. However, a slower rate of dephosphorylation of the E2P(Cu2+) form was observed for truncated CopB. The data suggest that the presence of the His residue in the putative transmembrane metal binding site of CopB determines a selectivity for this enzyme that is different for that observed in Cu+/Ag+-ATPases carrying a Cys-Pro-Cys sequence. The His-NMBD appears to have a regulatory role affecting the metal transport rate by controlling the metal release/dephosphorylation rates.


Asunto(s)
Proteínas Arqueales , Archaeoglobus fulgidus/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Proteínas de Transporte de Catión , Membrana Celular/metabolismo , Clonación Molecular , Cobre/química , Proteínas Transportadoras de Cobre , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Histidina/química , Iones , Cinética , Metales/química , Modelos Químicos , Datos de Secuencia Molecular , Fosforilación , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura , Factores de Tiempo
17.
Ann N Y Acad Sci ; 986: 212-8, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12763798

RESUMEN

PIB-type ATPases transport diverse heavy metals (Cu(+), Ag(+), Cu(2+). Zn(2+), Cd(2+), Pb(2+), Co(2+)) across membranes. Toward understanding their mechanisms of metal selectivity, we are studying thermophilic archaeal PIB-type ATPases. Like other PIB ATPases, these are characterized by the presence of a cation binding CPX sequence in their 6th transmembrane segment and by cytoplasmic N-terminus metal binding domains (N-MBDs). CopA and CopB from the thermophile Archaeoglobus fulgidus were cloned and expressed in E. coli. The resulting proteins were purified in a soluble active form. Typical yields were in the order of 3-5 mg of pure protein per liter of bacterial culture. Both enzymes showed maximum activity at 75-85 degrees C. CopA was activated by Ag(+)>Cu(+) while CopB was activated by Cu(2+)>Ag(+)>Cu(+). The differences in enzyme selectivity can be explained by different consensus sequences in the transmembrane cation binding domain (CopA: CPC, CopB: CPH). Mutagenesis studies show that the cysteines in the transmembrane CPC site of CopA are necessary for enzyme function, while those in the N-MBD (CXXC), although not essential, are required for maximum enzyme activity. Different from CopA, CopB has a His-rich N-MBD. Removal of this domain reduced enzyme activity without affecting enzyme selectivity. These studies show that these enzymes are an excellent system for structural functional studies directed to explain the mechanisms of metal selectivity by PIB ATPases.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Archaeoglobus fulgidus/enzimología , Archaeoglobus fulgidus/genética , Proteínas de Transporte de Catión/metabolismo , Metales Pesados/farmacocinética , Adenosina Trifosfatasas/genética , Transporte Biológico , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Clonación Molecular , Proteínas Transportadoras de Cobre , ATPasas Transportadoras de Cobre , Calor , Cinética , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
19.
Biochemistry ; 41(25): 8195-202, 2002 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12069612

RESUMEN

The Na,K-ATPase undergoes conformational transitions during its catalytic cycle that mediate energy transduction between the phosphorylation and cation-binding sites. Structure-function studies have shown that transmembrane segments H5 and H6 in the alpha subunit of the enzyme participate in cation binding and transport. The Ca-ATPase crystal structure indicates that the H5 helix extends into the cytoplasmic ATP binding domain, finishing 4-5 A from the phosphorylation site. Here, we test whether the phosphorylation of the Na,K-ATPase leads to conformational changes in the cation-binding H5-H6 hairpin. Using as background an enzyme where all wild-type Cys in the transmembrane region were replaced, Cys were introduced in the joining loop and extracellular ends of H5 and H6. Mutated proteins were expressed in COS cells and probed with Hg(2+), [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), and biotin-maleimide, applied to the extracellular media while placing the cells in two different media (K-medium and Na-medium). We assumed that under these treatment conditions most of the enzyme would be in one of two predominant conformations: E1 (K-medium) and E2P (Na-medium). The extent of enzyme inactivation by Hg(2+) or MTSET treatment was dependent on the targeted position; i.e., proteins carrying Cys in the outermost positions were more affected by treatment. Moreover, in the case of proteins carrying Cys at positions 785, 787, and 797, driving the enzyme to phosphorylated conformations (Na-media) led to a larger inactivation. Similarly, biotinylation of introduced Cys was also influenced by the enzyme conformation, with a larger extent of modification after treatment of cells in the Na-medium (E2P form). These results can be explained by the enzyme phosphorylation driving the outward movement of the H5 helix. Thus, they provide experimental evidence for a structure-function mechanism where, via H5, enzyme phosphorylation leads to a conformational change at the cation-binding site and the consequent cation translocation.


Asunto(s)
Cationes Monovalentes/química , Cationes Monovalentes/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión/genética , Células COS , Catálisis , Cisteína/genética , Espacio Extracelular/química , Espacio Extracelular/genética , Espacio Extracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Conformación Proteica , Estructura Secundaria de Proteína/genética , Transporte de Proteínas/genética , Ovinos
20.
J Biol Chem ; 277(9): 7201-8, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11756450

RESUMEN

The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF0152, encoding for PIB-type heavy metal transport ATPases. In this study, we describe the cloning, heterologous expression, purification, and functional characterization of one of these ATPases, CopA (NCB accession number AAB90763), encoded by AF0473. CopA is active at high temperatures (75 degrees C; E(a) = 103 kJ/mol) and inactive at 37 degrees C. It is activated by Ag+ (ATPase V(max) = 14.82 micromol/mg/h) and to a lesser extent by Cu+ (ATPase V(max) = 3.66 micromol/mg/h). However, Cu+ interacts with the enzyme with higher apparent affinity (ATPase stimulation, Ag+ K(12) = 29.4 microm; Cu+ K(12) = 2.1 microm). This activation by Ag+ or Cu+ is dependent on the presence of millimolar amounts of cysteine. In the presence of ATP, these metals drive the formation of an acid-stable phosphoenzyme with apparent affinities similar to those observed in the ATPase activity determinations (Ag+, K(12) = 23.0 microm; Cu+, K(12) = 3.9 microm). However, comparable levels of phosphoenzyme are reached in the presence of both cations (Ag+, 1.40 nmol/mg; Cu+, 1.08 nmol/mg). The stimulation of phosphorylation by the cations suggests that CopA drives the outward movement of the metal. CopA presents additional functional characteristics similar to other P-type ATPases. ATP interacts with the enzyme with two apparent affinities (ATPase K(m) = 0.25 mm; phosphorylation K(m) = 4.81 microm), and the presence of vanadate leads to enzyme inactivation (IC(50) = 24 microm). This is the first Ag+/Cu+ -ATPase expressed and purified in a functional form. Thus, it provides a model for structure-functional studies of these transporters. Moreover, its characterization will also contribute to an understanding of thermophilic ion transporters.


Asunto(s)
Adenosina Trifosfatasas/química , Archaeoglobus fulgidus/enzimología , Proteínas de Transporte de Catión/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Catálisis , Proteínas de Transporte de Catión/genética , Cationes , Clonación Molecular , Cobre/química , ATPasas Transportadoras de Cobre , Cisteína/química , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Cinética , Oligomicinas/farmacología , Fosforilación , Estructura Terciaria de Proteína , Sales (Química)/farmacología , Plata/química , Temperatura , Factores de Tiempo , Vanadatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA