Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO Mol Med ; 14(12): e15809, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345711

RESUMEN

Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.


Asunto(s)
Síndrome de Alagille , Femenino , Masculino , Animales , Ratones , Síndrome de Alagille/complicaciones , Caracteres Sexuales , Retina , Factores de Riesgo
2.
Cell Rep Methods ; 1(4)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34557863

RESUMEN

Genetic loss and gain of function in mice have typically been studied by using knockout or knockin mice that take months to years to generate. To address this problem for the nervous system, we developed NEPTUNE (NEural Plate Targeting by in Utero NanoinjEction) to rapidly and flexibly transduce the neural plate with virus prior to neurulation, and thus manipulate the future nervous system. Stable integration in >95% of cells in the brain enabled long-term overexpression, and conditional expression was achieved by using cell-type-specific MiniPromoters. Knockdown of Olig2 by using NEPTUNE recapitulated the phenotype of Olig2 -/- embryos. We used NEPTUNE to investigate Sptbn2, mutations in which cause spinocerebellar ataxia type 5. Sptbn2 knockdown induced dose-dependent defects in the neural tube, embryonic turning, and abdominal wall closure, previously unreported functions for Sptbn2. NEPTUNE thus offers a rapid and cost-effective technique to test gene function in the nervous system and can reveal phenotypes incompatible with life.


Asunto(s)
Neptuno , Defectos del Tubo Neural , Ratones , Animales , Tubo Neural/fisiología , Encéfalo , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA