Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 207: 107-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942534

RESUMEN

Personalized medicine has emerged as a revolutionary approach to healthcare in the 21st century. By understanding a patient's unique genetic and biological characteristics, it aims to tailor treatments specifically to the individual. This approach takes into account factors such as an individual's lifestyle, genetic makeup, and environmental factors to provide targeted therapies that have the potential to be more effective and lower the risk of side reactions or ineffective treatments. It is a paradigm shift from the traditional "one size fits all" approach in medicine, where patients with similar symptoms or diagnoses receive the same standard treatments regardless of their differences. It leads to improved clinical outcomes and more efficient use of healthcare resources. Drug repurposing is a strategy that uses existing drugs for new indications and aims to take advantage of the known safety profiles, pharmacokinetics, and mechanisms of action of these drugs to accelerate the development process. Precision medicine may undergo a revolutionary change as a result, enabling the rapid development of novel treatment plans utilizing drugs that traditional methods would not otherwise link to. In this chapter, we have focused on a few strategies wherein drug repurposing has shown great success for precision medicine. The approach is particularly useful in oncology as there are many variations induced in the genetic material of cancer patients, so tailored treatment approaches go a long way. We have discussed the cases of breast cancer, glioblastoma and hepatocellular carcinoma. Other than that, we have also looked at drug repurposing approaches in anxiety disorders and COVID-19.


Asunto(s)
Reposicionamiento de Medicamentos , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , COVID-19 , Neoplasias/tratamiento farmacológico
2.
Am J Transl Res ; 15(8): 4984-5006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692967

RESUMEN

Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.

3.
Prog Mol Biol Transl Sci ; 198: 1-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37225316

RESUMEN

Epigenetic modifications such as DNA methylation, post-translational chromatin modifications and non-coding RNA-mediated mechanisms are responsible for epigenetic inheritance. Change in gene expression due to these epigenetic modifications are responsible for new traits in different organisms leading to various diseases including cancer, diabetic kidney disease (DKD), diabetic nephropathy (DN) and renal fibrosis. Bioinformatics is an effective approach for epigenomic profiling. These epigenomic data can be analyzed by a large number of bioinformatics tools and software. Many databases are available online, which comprises huge amount of information regarding these modifications. Recent methodologies include many sequencing and analytical techniques to extrapolate different types of epigenetic data. This data can be used to design drugs against diseases linked to epigenetic modifications. This chapter briefly highlights different epigenetics databases (MethDB, REBASE, Pubmeth, MethPrimerDB, Histone Database, ChromDB, MeInfoText database, EpimiR, Methylome DB, and dbHiMo), and tools (compEpiTools, CpGProD, MethBlAST, EpiExplorer, and BiQ analyzer), which are being utilized to retrieve the data and mechanistically analysis of epigenetics modifications.


Asunto(s)
Epigénesis Genética , Epigenómica , Humanos , Histonas , Metilación de ADN/genética , Biología Computacional
4.
Prog Mol Biol Transl Sci ; 197: 1-21, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37019588

RESUMEN

The most eminent research of the 21st century whirls around the epigenetic and the variability of DNA sequences in humans. The reciprocity between the epigenetic changes and the exogenous factors drives an influence on the inheritance biology and gene expression both inter-generationally and trans-generationally. Chromatin level modifications like DNA methylation, histone modifications or changes in transcripts functions either at transcription level or translational level pave the way for certain diseases or cancer in humans. The ability of epigenetics to explain the processes of various diseases has been demonstrated by recent epigenetic studies. Multidisciplinary therapeutic strategies were developed in order to analyse how epigenetic elements interact with different disease pathways. In this chapter we summarize how an organism may be predisposed to certain diseases by exposure to environmental variables such as chemicals, medications, stress, or infections during particular, vulnerable phases of life, and the epigenetic component may influence some of the diseases in humans.


Asunto(s)
Epigénesis Genética , Histonas , Humanos , Histonas/metabolismo , Metilación de ADN , Secuencia de Bases
5.
Prog Mol Biol Transl Sci ; 197: 23-50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37019594

RESUMEN

The epigenome consists of all the epigenetic alterations like DNA methylation, the histone modifications and non-coding RNAs which change the gene expression and have a role in diseases like cancer and other processes. Epigenetic modifications can control gene expression through variable gene activity at various levels which affects various cellular phenomenon such as cell differentiations, variability, morphogenesis, and the adaptability of an organism. Various factors such as food, pollutants, drugs, stress etc., impact the epigenome. Epigenetic mechanisms mainly involve various post-translational alteration of histones and DNA methylation. Numerous methods have been utilized to study these epigenetic marks. Various histone modifications and binding of histone modifier proteins can be analyzed using chromatin immunoprecipitation (ChIP) which is one of broadly utilized method. Other modified forms of the ChIP have been developed such as reverse chromatin immunoprecipitation (R-ChIP); sequential ChIP (ChIP-re-ChIP) and some high-throughput modified forms of ChIP such as ChIP-seq and ChIP-on-chip. Another epigenetic mechanism is DNA methylation, in which DNA methyltransferases (DNMTs) add a methyl group to the C-5 position of the cytosine. Bisulfite sequencing is the oldest and usually utilized method to measure the DNA methylation status. Other techniques have been established are whole genome bisulfite sequencing (WGBS), methylated DNA immune-precipitation based methods (MeDIP), methylation sensitive restriction enzyme digestion followed by sequencing (MRE-seq) and methylation BeadChip to study the methylome. This chapter briefly discusses the key principles and methods used to study epigenetics in health and disease conditions.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Sulfitos , Histonas , ADN
6.
Prog Mol Biol Transl Sci ; 192(1): 33-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36280324

RESUMEN

Since birth, the human body gets colonized by various communities of symbiotic or commensal microorganisms and they persist till the death of an individual. The human microbiome is comprised of the genomes of microorganisms such as viruses, archaea, eukaryotes, protozoa, and, most remarkably, bacteria. The development of "omics" technologies gave way to the Human Microbiome Project (HMP) which aimed at exploring the collection of microbial genes and genomes inhabiting the human body. Eubiosis, i.e., a healthy and balanced composition of such microbes contributes to the metabolic function, protection against pathogens and provides nutrients and energy to the host. Whereas, an imbalance in the diversity of microorganisms, termed dysbiosis, greatly influences the state of health and disease. This chapter summarizes the impact of gut bacteria on the well-being of humans and highlights the protective role played by the human microbiota during bacterial and viral infections. The condition of dysbiosis and how it plays a role in the establishment of various infections and metabolic disorders such as Clostridioides difficile infection (CFI), inflammatory bowel disease (IBD), cancer, periodontitis, and obesity are described in detail. Further, treatments such as fecal transplantation, probiotics, prebiotics, phage therapy, and CRISPR/Cas system, which target gut microbiota during digestive diseases are also discussed.


Asunto(s)
Enfermedades Transmisibles , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Disbiosis , Prebióticos , Bacterias
7.
J Control Release ; 343: 703-723, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149141

RESUMEN

A single gene mutation can cause a number of human diseases that affect the quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid a disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease. Delivery of CRISPR-components being a pivotal aspect in proving its effectiveness, various proven delivery systems have also been briefly discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Terapia Genética/métodos , Mutación , Calidad de Vida
8.
Cells ; 10(9)2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34571899

RESUMEN

Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Transcriptoma , Adenosina/análogos & derivados , Adenosina/química , Animales , Humanos , Neoplasias/inmunología , Neoplasias/patología , Procesamiento Postranscripcional del ARN
9.
Prog Mol Biol Transl Sci ; 181: 165-183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34127193

RESUMEN

This chapter analyzes to use of the genome editing tool to the treatment of various genetic diseases. The genome editing method could be used to change the DNA in cells or organisms to understand their physiological response. Therefore, a key objective is to present general information about the use of the genome editing tool in a pertinent way. An emerging genome editing technology like a clustered regularly short palindromic repeats (CRISPR) is an extensively expended in biological sciences. CRISPR and CRISPR-associated protein 9 (CRISPR-Cas9) technique is being utilized to edit any DNA mutations associated with hereditary diseases to study in cells (in vitro) and animals (in vivo). Interestingly, CRISPR-Cas9 could be used to the investigation of treatments of various human hereditary diseases such as hemophila, ß-thalassemia, cystic fibrosis, Alzheimer's, Huntington's, Parkinson's, tyrosinemia, Duchnene muscular dystrophy, Tay-Sachs, and fragile X syndrome disorders. Furthermore, CRISPR-Cas9 could also be used in other diseases to the improvement of human health. Finally, this chapter discuss current progress to treatment for hereditary diseases using CRISPR-Cas9 technology and highlights associated challenges and future prospects.


Asunto(s)
Sistemas CRISPR-Cas , Terapia Genética , Animales , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Mutación
10.
Physiol Genomics ; 48(7): 477-90, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199456

RESUMEN

The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (ß-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of ß-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner.


Asunto(s)
Biomarcadores/metabolismo , Ácido Butírico/farmacología , Corazón/efectos de los fármacos , Hipertrofia/tratamiento farmacológico , Inflamación/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Tretinoina/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Citocinas/metabolismo , Diástole/efectos de los fármacos , Haplotipos/efectos de los fármacos , Hipertrofia/metabolismo , Masculino , Ratones , Sístole/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA