Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629161

RESUMEN

Autophagy is a tightly regulated catabolic process involved in the degradation and recycling of proteins and organelles. Ubiquitination plays an important role in the regulation of autophagy. Vacuole Membrane Protein 1 (VMP1) is an essential autophagy protein. The expression of VMP1 in pancreatic cancer stem cells carrying the activated Kirsten rat sarcoma viral oncogene homolog (KRAS) triggers autophagy and enables therapy resistance. Using biochemical and cellular approaches, we identified ubiquitination as a post-translational modification of VMP1 from the initial steps in autophagosome biogenesis. VMP1 remains ubiquitinated as part of the autophagosome membrane throughout autophagic flux until autolysosome formation. However, VMP1 is not degraded by autophagy, nor by the ubiquitin-proteasomal system. Mass spectrometry and immunoprecipitation showed that the cell division cycle protein cdt2 (Cdt2), the substrate recognition subunit of the E3 ligase complex associated with cancer, cullin-RING ubiquitin ligase complex 4 (CRL4), is a novel interactor of VMP1 and is involved in VMP1 ubiquitination. VMP1 ubiquitination decreases under the CRL inhibitor MLN4924 and increases with Cdt2 overexpression. Moreover, VMP1 recruitment and autophagosome formation is significantly affected by CRL inhibition. Our results indicate that ubiquitination is a novel post-translational modification of VMP1 during autophagy in human tumor cells. VMP1 ubiquitination may be of clinical relevance in tumor-cell-therapy resistance.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Procesamiento Proteico-Postraduccional , Humanos , Autofagia/genética , Macroautofagia , Proteínas de la Membrana/metabolismo , Ubiquitina , Ubiquitinación
2.
J Vis Exp ; (194)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37184277

RESUMEN

Autophagy is a specialized catabolic process that selectively degrades cytoplasmic components, including proteins and damaged organelles. Autophagy allows cells to physiologically respond to stress stimuli and, thus, maintain cellular homeostasis. Cancer cells might modulate their autophagy levels to adapt to adverse conditions such as hypoxia, nutrient deficiency, or damage caused by chemotherapy. Ductal pancreatic adenocarcinoma is one of the deadliest types of cancer. Pancreatic cancer cells have high autophagy activity due to the transcriptional upregulation and post-translational activation of autophagy proteins. Here, the PANC-1 cell line was used as a model of pancreatic human cancer cells, and the AR42J pancreatic acinar cell line was used as a physiological model of highly differentiated mammalian cells. This study used the immunofluorescence of microtubule-associated protein light chain 3 (LC3) as an indicator of the status of autophagy activation. LC3 is an autophagy protein that, in basal conditions, shows a diffuse pattern of distribution in the cytoplasm (known as LC3-I in this condition). Autophagy induction triggers the conjugation of LC3 to phosphatidylethanolamine on the surface of newly formed autophagosomes to form LC3-II, a membrane-bound protein that aids in the formation and expansion of autophagosomes. To quantify the number of labeled autophagic structures, the open-source software FIJI was utilized with the aid of the "3D Objects Counter" tool. The measure of the autophagic levels both in physiological conditions and in cancer cells allows us to study the modulation of autophagy under diverse conditions such as hypoxia, chemotherapy treatment, or the knockdown of certain proteins.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Humanos , Células HeLa , Autofagia/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Técnica del Anticuerpo Fluorescente , Hipoxia , Mamíferos/metabolismo , Neoplasias Pancreáticas
3.
Autophagy ; 18(4): 841-859, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34424124

RESUMEN

The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3-/-/perk-/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease.Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.


Asunto(s)
Autofagia , Úlcera de Buruli , Factor 2 Eucariótico de Iniciación/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrólidos , Ratones , Factor 2 Procariótico de Iniciación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Canales de Translocación SEC/metabolismo , Proteína Sequestosoma-1/metabolismo , Ubiquitina/metabolismo
4.
J Cell Sci ; 126(Pt 22): 5224-38, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24013547

RESUMEN

Induction of autophagy requires the ULK1 protein kinase complex and the Vps34 lipid kinase complex. PtdIns3P synthesised by Vps34 accumulates in omegasomes, membrane extensions of the ER within which some autophagosomes form. The ULK1 complex is thought to target autophagosomes independently of PtdIns3P, and its functional relationship to omegasomes is unclear. Here we show that the ULK1 complex colocalises with omegasomes in a PtdIns3P-dependent way. Live-cell imaging of Atg13 (a ULK1 complex component), omegasomes and LC3 establishes and annotates for the first time a complete sequence of steps leading to autophagosome formation, as follows. Upon starvation, the ULK1 complex forms puncta associated with the ER and sporadically with mitochondria. If PtdIns3P is available, these puncta become omegasomes. Subsequently, the ULK1 complex exits omegasomes and autophagosomes bud off. If PtdIns3P is unavailable, ULK1 puncta are greatly reduced in number and duration. Atg13 contains a region with affinity for acidic phospholipids, required for translocation to punctate structures and autophagy progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Fosfatidilinositol 3-Quinasas Clase III/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Vacuolas/metabolismo
5.
J Vis Exp ; (77)2013 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-23929131

RESUMEN

Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer. Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution. Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we can follow the contribution of the POI to autophagy in space and time.


Asunto(s)
Autofagia/fisiología , Fagosomas/química , Análisis de la Célula Individual/métodos , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Transfección
6.
Autophagy ; 9(9): 1407-17, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23800949

RESUMEN

Basal autophagy-here defined as macroautophagic activity during cellular growth in normal medium containing amino acids and serum-appears to be highly active in many cell types and in animal tissues. Here we characterized this pathway in mammalian HEK 293 cells. First, we examined, side by side, three compounds that are widely used to reveal basal autophagy by blocking maturation of autophagosomes: bafilomycin A 1 (BafA1), chloroquine and vinblastine. Only BafA1 appeared to be without complicating side effects. Chloroquine partially inhibited mechanistic target of rapamycin (MTOR) activity, which would induce autophagy induction as well as block autophagosome maturation. Vinblastine caused the distribution of early omegasome components into punctate phagophore assembly sites, and therefore it would also induce autophagy, complicating interpretation. Basal autophagy was significantly sensitive to inhibition by wortmannin, and therefore required formation of phosphatidylinositol 3-phosphate (PtdIns3P), but it was twice as resistant to wortmannin as starvation-induced autophagy. We also determined that basal autophagy was significantly suppressed by MTOR activation brought about by overexpression of RHEB or activated RAGs. Finally we investigated the spatial relationship of nascent autophagosomes to the endoplasmic reticulum (ER) or to mitochondria by live imaging experiments under conditions that reveal basal autophagy (with BafA1 treatment), or upon MTOR inactivation (which would result in autophagy induction). Side-by-side comparison showed that under both basal and induced autophagy, 100% of autophagosomes first appeared in close proximity to ER strands. In parallel measurements, 40% were in close proximity to mitochondria under both conditions. We concluded that in HEK 293 cells, basal autophagy is mechanistically similar to that induced by MTOR inactivation in all aspects examined.


Asunto(s)
Autofagia , Androstadienos/farmacología , Biomarcadores/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Macrólidos/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Wortmanina
7.
Autophagy ; 7(11): 1335-47, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21799305

RESUMEN

Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defence against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, Infectious Bronchitis Virus (IBV) activates autophagy. A screen of individual IBV non-structural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses Mouse Hepatitis Virus, and Severe Acute Respiratory Syndrome Virus, and the equivalent nsp5-7 of the arterivirus Porcine Reproductive and Respiratory Syndrome Virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II-positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double FYVE-domain containing protein (DFCP) indicating localised concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signalling, activation of sirtuin1 or induction of ER stress.


Asunto(s)
Autofagia , Retículo Endoplásmico/metabolismo , Virus de la Bronquitis Infecciosa/metabolismo , Fagosomas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Androstadienos/farmacología , Animales , Arterivirus/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/virología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Genoma Viral/genética , Humanos , Virus de la Bronquitis Infecciosa/genética , Fusión de Membrana/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Estructura Terciaria de Proteína , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción CHOP/metabolismo , Proteínas no Estructurales Virales/química , Wortmanina
8.
Autophagy ; 4(8): 1093-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18927492

RESUMEN

Autophagy presents a topological challenge for the cell because it requires delivery of cytosolic material to the lumen of a membrane-bound compartment, the lysosome. This is solved in an ingenious way by the formation of a double-membrane vesicle, the autophagosome, which captures cytosolic proteins and organelles during its transformation from a planar membrane disk into a sphere. In this way, cytosolic material first becomes lumenal and is then delivered for degradation to the lysosome. An unsolved set of questions in autophagy concerns the membrane of the autophagosome: what are the signals for its formation and what is its identity? Recently we provided some clues that may help answer these questions. By following the dynamics of several phosphatidylinositol 3-phosphate (PI3P)-binding proteins during amino acid starvation (and autophagy induction) we concluded that at least some autophagosomes are formed in a starvation-induced, PI3P-enriched membrane compartment dynamically connected to the endoplasmic reticulum (ER). We termed the membranes of this compartment omegasomes (from their omega-like shape). Our data suggest that PI3P is important for providing localization clues and perhaps for facilitating the fusion step at the final stage of autophagosome formation.


Asunto(s)
Autofagia , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Proteínas/metabolismo
9.
J Cell Biol ; 182(4): 685-701, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-18725538

RESUMEN

Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain-containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.


Asunto(s)
Autofagia , Compartimento Celular , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Supervivencia Celular , Células Clonales , Regulación hacia Abajo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Membranas Intracelulares/ultraestructura , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fagosomas/enzimología , Fagosomas/ultraestructura , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo
10.
J Biol Chem ; 279(43): 44763-74, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15310762

RESUMEN

Sphingosine kinase 1 (SK1) phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). Because both substrate and product of the enzyme are potentially important signaling molecules, the regulation of SK1 is of considerable interest. We report that SK1, which is ordinarily a cytosolic enzyme, translocates in vivo and in vitro to membrane compartments enriched in phosphatidic acid (PA), the lipid product of phospholipase D. This translocation depends on direct interaction of SK1 with PA, because recombinant purified enzyme shows strong affinity for pure PA coupled to Affi-Gel. The SK1-PA interaction maps to the C terminus of SK1 and is independent of catalytic activity or of the diacylglycerol kinase-like domain of the enzyme. Thus SK1 constitutes a novel, physiologically relevant PA effector.


Asunto(s)
Ácidos Fosfatidicos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Animales , Transporte Biológico , Células CHO , Células COS , Dominio Catalítico , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Citosol/metabolismo , Diacilglicerol Quinasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Metabolismo de los Lípidos , Lípidos/química , Liposomas/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Fosfolipasa D/metabolismo , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes/química , Transducción de Señal
11.
J Biol Chem ; 277(32): 29152-61, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-12021265

RESUMEN

The amino terminus of phospholipase D1 (PLD1) contains three potential membrane-interacting determinants: a phox homology (PX) domain, a pleckstrin homology (PH) domain and two adjacent cysteines at positions 240 and 241 within the PH domain that are fatty acylated in vivo. To understand how these determinants contribute to membrane localization, we have mutagenized critical residues of the PLD1 PH domain in the wild type or palmitate-free background in the intact protein, in a fragment that deletes the first 210 amino acids including the PX domain, and in the isolated PH domain. Mutants were expressed in COS-7 cells and examined for membrane residence, intracellular localization, palmitoylation, and catalytic activity. Our results are as follows. 1) Mutagenesis of critical residues of the PH domain results in redistribution of PLD1 from membranes to cytosol, independently of fatty acylation sites. Importantly, PH domain mutants in the wild type background showed greatly reduced fatty acylation, despite the presence of all relevant cysteines. 2) The isolated PH domain did not co-localize with PLD1 and was not palmitoylated. 3) The PX deletion mutant showed similar distribution and palmitoylation to the intact protein. Interestingly, PH domain mutants in this background showed significant palmitoylation and incomplete cytosolic redistribution. 4) PH domain mutants in the wild type or palmitate-free background maintained catalytic activity. We propose that membrane targeting of PLD1 involves a hierarchy of signals with a functional PH domain allowing fatty acylation leading to strong membrane binding. The PX domain may modulate function of the PH domain.


Asunto(s)
Membrana Celular/enzimología , Fosfolipasa D/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Membrana Celular/metabolismo , Cricetinae , Citosol/metabolismo , Detergentes/farmacología , Ligandos , Metabolismo de los Lípidos , Microscopía Fluorescente , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Ácidos Palmíticos/metabolismo , Fosfolipasa D/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Conejos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA