Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biochem Soc Trans ; 52(1): 269-278, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372426

RESUMEN

Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3ß (GSK3ß) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Zinc , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Zinc/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Glutatión/metabolismo
2.
Redox Biol ; 64: 102777, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315344

RESUMEN

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Asunto(s)
Vasos Coronarios , Hiperoxia , Humanos , Vasos Coronarios/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinc/farmacología , Zinc/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hiperoxia/metabolismo , Glutatión/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos
3.
Pathogens ; 12(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36986408

RESUMEN

Breast cancer is the leading cause of death among women worldwide, and certain subtypes are highly aggressive and drug resistant. As oxidative stress is linked to the onset and progression of cancer, new alternative therapies, based on plant-derived compounds that activate signaling pathways involved in the maintenance of cellular redox homeostasis, have received increasing interest. Among the bioactive dietary compounds considered for cancer prevention and treatment are flavonoids, such as quercetin, carotenoids, such as lycopene, polyphenols, such as resveratrol and stilbenes, and isothiocyanates, such as sulforaphane. In healthy cells, these bioactive phytochemicals exhibit antioxidant, anti-apoptotic and anti-inflammatory properties through intracellular signaling pathways and epigenetic regulation. Short-chain fatty acids (SCFAs), produced by intestinal microbiota and obtained from the diet, also exhibit anti-inflammatory and anti-proliferative properties related to their redox signaling activity-and are thus key for cell homeostasis. There is evidence supporting an antioxidant role for SCFAs, mainly butyrate, as modulators of Nrf2-Keap1 signaling involving the inhibition of histone deacetylases (HDACs) and/or Nrf2 nuclear translocation. Incorporation of SCFAs in nutritional and pharmacological interventions changes the composition of the the intestinal microbiota, which has been shown to be relevant for cancer prevention and treatment. In this review, we focused on the antioxidant properties of SCFAs and their impact on cancer development and treatment, with special emphasis on breast cancer.

4.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36829834

RESUMEN

Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.

5.
Free Radic Biol Med ; 191: 191-202, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36064071

RESUMEN

Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Quinasa de la Caseína II/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Ceramidas , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Peroxidasas/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Factor de Transcripción AP-1/metabolismo
7.
Redox Biol ; 53: 102319, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525027

RESUMEN

Iron is an essential metal for cellular metabolism and signaling, but it has adverse effects in excess. The physiological consequences of iron deficiency are well established, yet the relationship between iron supplementation and pericellular oxygen levels in cultured cells and their downstream effects on metalloproteins has been less explored. This study exploits the metalloprotein geNOps in cultured HEK293T epithelial and EA.hy926 endothelial cells to test the iron-dependency in cells adapted to standard room air (18 kPa O2) or physiological normoxia (5 kPa O2). We show that cells in culture require iron supplementation to activate the metalloprotein geNOps and demonstrate for the first time that cells adapted to physiological normoxia require significantly lower iron compared to cells adapted to hyperoxia. This study establishes an essential role for recapitulating oxygen levels in vivo and uncovers a previously unrecognized requirement for ferrous iron supplementation under standard cell culture conditions to achieve geNOps functionality.


Asunto(s)
Técnicas Biosensibles , Metaloproteínas , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Hierro/metabolismo , Metaloproteínas/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo
8.
Redox Biol ; 47: 102165, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34662811

RESUMEN

Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer.


Asunto(s)
Ácidos Grasos Volátiles , Transducción de Señal , Carcinogénesis/metabolismo , Ácidos Grasos Volátiles/metabolismo , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción
9.
Redox Biol ; 38: 101816, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340902

RESUMEN

Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is critical for vascular endothelial redox homeostasis in regions of high, unidirectional shear stress (USS), however the underlying mechanosensitive mediators are not fully understood. The endothelial glycocalyx is disrupted in arterial areas exposed to disturbed blood flow that also exhibit enhanced oxidative stress leading to atherogenesis. We investigated the contribution of glycocalyx sialic acids (SIA) to Nrf2 signaling in human endothelial cells (EC) exposed to atheroprotective USS or atherogenic low oscillatory shear stress (OSS). Cells exposed to USS exhibited a thicker glycocalyx and enhanced turnover of SIA which was reduced in cells cultured under OSS. Physiological USS, but not disturbed OSS, enhanced Nrf2-mediated expression of antioxidant enzymes, which was attenuated following SIA cleavage with exogenous neuraminidase. SIA removal disrupted kinase signaling involved in the nuclear accumulation of Nrf2 elicited by USS and promoted mitochondrial reactive oxygen species accumulation. Notably, knockdown of the endogenous sialidase NEU1 potentiated Nrf2 target gene expression, directly implicating SIA in regulation of Nrf2 signaling by USS. In the absence of SIA, deficits in Nrf2 responses to physiological flow were also associated with a pro-inflammatory EC phenotype. This study demonstrates that the glycocalyx modulates endothelial redox state in response to shear stress and provides the first evidence of an atheroprotective synergism between SIA and Nrf2 antioxidant signaling. The endothelial glycocalyx therefore represents a potential therapeutic target against EC dysfunction in cardiovascular disease and redox dyshomeostasis in ageing.


Asunto(s)
Células Endoteliales , Factor 2 Relacionado con NF-E2 , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ácidos Siálicos , Estrés Mecánico
10.
Redox Biol ; 37: 101708, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32949969

RESUMEN

Ischemic stroke is associated with a surge in reactive oxygen species generation during reperfusion. The narrow therapeutic window for the delivery of intravenous thrombolysis and endovascular thrombectomy limits therapeutic options for patients. Thus, understanding the mechanisms regulating neurovascular redox defenses are key for improved clinical translation. Our previous studies in a rodent model of ischemic stroke established that activation of Nrf2 defense enzymes by pretreatment with sulforaphane (SFN) affords protection against neurovascular and neurological deficits. We here further investigate SFN mediated protection in mouse brain microvascular endothelial cells (bEnd.3) adapted long-term (5 days) to hyperoxic (18 kPa) and normoxic (5 kPa) O2 levels. Using an O2-sensitive phosphorescent nanoparticle probe, we measured an intracellular O2 level of 3.4 ± 0.1 kPa in bEnd 3 cells cultured under 5 kPa O2. Induction of HO-1 and GCLM by SFN (2.5 µM) was significantly attenuated in cells adapted to 5 kPa O2, despite nuclear accumulation of Nrf2. To simulate ischemic stroke, bEnd.3 cells were adapted to 18 or 5 kPa O2 and subjected to hypoxia (1 kPa O2, 1 h) and reoxygenation. In cells adapted to 18 kPa O2, reoxygenation induced free radical generation was abrogated by PEG-SOD and significantly attenuated by pretreatment with SFN (2.5 µM). Silencing Nrf2 transcription abrogated HO-1 and NQO1 induction and led to a significant increase in reoxygenation induced free radical generation. Notably, reoxygenation induced oxidative stress, assayed using the luminescence probe L-012 and fluorescence probes MitoSOX™ Red and FeRhoNox™-1, was diminished in cells cultured under 5 kPa O2, indicating an altered redox phenotype in brain microvascular cells adapted to physiological normoxia. As redox and other intracellular signaling pathways are critically affected by O2, the development of antioxidant therapies targeting the Keap1-Nrf2 defense pathway in treatment of ischemia-reperfusion injury in stroke, coronary and renal disease will require in vitro studies conducted under well-defined O2 levels.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Oxígeno , Animales , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Humanos , Hipoxia , Isotiocianatos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Sulfóxidos
11.
Front Physiol ; 11: 23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082188

RESUMEN

Among antioxidants in the human body, bilirubin has been recognized over the past 20 years to afford protection against different chronic conditions, including inflammation and cardiovascular disease. Moderate increases in plasma concentration and cellular bilirubin generation from metabolism of heme via heme oxygenase (HMOX) in virtually all tissues can modulate endothelial and vascular function and exert antioxidant and anti-inflammatory roles. This review aims to provide an up-to-date and critical overview of the molecular mechanisms by which bilirubin derived from plasma or from HMOX1 activation in vascular cells affects endothelial function. Understanding the molecular actions of bilirubin may critically improve the management not only of key cardiovascular diseases, but also provide insights into a broad spectrum of pathologies driven by endothelial dysfunction. In this context, therapeutic interventions aimed at mildly increasing serum bilirubin as well as bilirubin generated endogenously by endothelial HMOX1 should be considered.

12.
Diabetes ; 68(9): 1841-1852, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217174

RESUMEN

Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3ß phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.


Asunto(s)
Capilares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glomérulos Renales/irrigación sanguínea , Proteínas Nogo/metabolismo , Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Humanos , Glomérulos Renales/metabolismo , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Nogo/sangre , Proteínas Nogo/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Free Radic Biol Med ; 133: 169-178, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30189266

RESUMEN

Astrocyte-neuron interactions protect neurons from iron-mediated toxicity. As dopamine can be metabolized to reactive quinones, dopaminergic neurons are susceptible to oxidative damage and ferroptosis-like induced cell death. Detoxification enzymes are required to protect neurons. Brain-derived neurotrophic factor (BDNF) plays a key role in the regulation of redox sensitive transcription factor Nrf2 in astrocytes and metabolic cooperation between astrocytes and neurons. This article reviews the importance of BDNF and astrocyte-neuron interactions in the protection of neurons against oxidative damages in rodent brains. We previously proposed that BDNF activates Nrf2 via the truncated TrkB.T1 and p75NTR receptor complex in astrocytes. Stimulation by BDNF generates the signaling molecule ceramide, which activates PKCζ leading to induction of the CK2-Nrf2 signaling axis. As a cell clock regulates p75NTR expression, we suggested that BDNF effectively activates Nrf2 in astrocytes during the rest phase. In contrast, neurons express both TrkB.FL and TrkB.T1, and TrkB.FL tyrosine kinase activity inhibits p75NTR-dependent ceramide generation and internalizes p75NTR. Therefore, BDNF may not effectively activate Nrf2 in neurons. Notably, neurons only weakly activate detoxification and antioxidant enzymes/proteins via the Nrf2-ARE signaling axis. Thus, astrocytes may provide relevant transcripts and/or proteins to neurons via microparticles/exosomes increasing neuronal resistance to oxidative stress. Circadian increases in the levels of circulating glucocorticoids may further facilitate material transfer from astrocytes to neurons via the stimulation of pannexin 1 channels-P2X7R signaling pathway in astrocytes at the beginning of the active phase. Dysregulation of astrocyte-neuron interactions could therefore contribute to the pathogenesis of neurodegenerative diseases including Parkinson's disease.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Neuronas Dopaminérgicas/metabolismo , Hierro/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Relojes Circadianos/genética , Ferroptosis/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Ratas , Roedores
14.
Free Radic Biol Med ; 119: 34-44, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29374533

RESUMEN

Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75NTR-ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75NTR, TrkB.T1 functionally interacts with adenosine A2AR and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons.


Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Metabolismo Energético/fisiología , Receptor de Factor de Crecimiento Nervioso/metabolismo , Animales , Relojes Circadianos/fisiología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Transducción de Señal/fisiología
15.
Nucleic Acids Res ; 46(3): 1210-1226, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29186571

RESUMEN

Graded levels of molecular oxygen (O2) exist within developing mammalian embryos and can differentially regulate cellular specification pathways. During differentiation, cells acquire distinct epigenetic landscapes, which determine their function, however the mechanisms which regulate this are poorly understood. The demethylation of 5-methylcytosine (5mC) is achieved via successive oxidation reactions catalysed by the Ten-Eleven-Translocation (Tet) enzymes, yielding the 5-hydroxymethylcytosine (5hmC) intermediate. These require O2 as a co-factor, and hence may link epigenetic processes directly to O2 gradients during development. We demonstrate that the activities of Tet enzymes display distinct patterns of [O2]-dependency, and that Tet1 activity, specifically, is subject to differential regulation within a range of O2 which is physiologically relevant in embryogenesis. Further, differentiating embryonic stem cells displayed a transient burst of 5hmC, which was both dependent upon Tet1 and inhibited by low (1%) [O2]. A GC-rich promoter region within the Tet3 locus was identified as a significant target of this 5mC-hydroxylation. Further, this region was shown to associate with Tet1, and display the histone epigenetic marks, H3K4me3 and H3K27me3, which are characteristic of a bivalent, developmentally 'poised' promoter. We conclude that Tet1 activity, determined by [O2] may play a critical role in regulating cellular differentiation and fate in embryogenesis.


Asunto(s)
Dioxigenasas/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Oxigenasas de Función Mixta/genética , Células Madre Embrionarias de Ratones/efectos de los fármacos , Oxígeno/farmacología , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Aminoácidos Dicarboxílicos/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular , Desmetilación , Dioxigenasas/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Hidroxilación , Ratones , Oxigenasas de Función Mixta/metabolismo , Modelos Biológicos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
16.
J Cell Mol Med ; 21(3): 621-627, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27696667

RESUMEN

Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). The anti-ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO-1) and peroxiredoxin-1 (Prx-1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO-1 and Prx-1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII-mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2-mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.


Asunto(s)
Envejecimiento/metabolismo , Antioxidantes/metabolismo , Aorta/metabolismo , Glucuronidasa/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Angiotensina II/metabolismo , Apoptosis/fisiología , Células Cultivadas , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Proteínas Klotho , Oxidación-Reducción , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología
17.
FEBS Lett ; 590(2): 258-69, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26823171

RESUMEN

To date, in vitro studies assessing the pulmonary toxicity of inhaled particles have provided poor correlation with in vivo results. We explored whether this discrepancy reflected cellular adaptations in pulmonary cells cultured under atmospheric oxygen concentrations (21%) compared with in vivo alveolar concentrations (100 mm Hg, ~ 13%) and whether this blunted cellular responses to nanoparticle challenge. At 21% oxygen, A549 cells had augmented intracellular glutathione concentrations, with evidence of increased tolerance to CuO nanoparticles, with reduced reactive oxygen species production, blunted transcriptional responses and delayed cell death, compared to cells cultured at 13% oxygen. These data support the contention that standard cell culture conditions pre-adapt cells to oxidative insults and emphasize the necessity of ensuring normoxic conditions in model systems to improve their predictive value.


Asunto(s)
Oxígeno/fisiología , Tráquea/fisiología , Artefactos , Línea Celular , Cobre/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Glutatión/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Nanopartículas , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tráquea/citología , Tráquea/metabolismo , Transcripción Genética/efectos de los fármacos
18.
Free Radic Biol Med ; 92: 152-162, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26698668

RESUMEN

The effects of physiological oxygen tension on Nuclear Factor-E2-Related Factor 2 (Nrf2)-regulated redox signaling remain poorly understood. We report the first study of Nrf2-regulated signaling in human primary endothelial cells (EC) adapted long-term to physiological O2 (5%). Adaptation of EC to 5% O2 had minimal effects on cell ultrastructure, viability, basal redox status or HIF1-α expression. Affymetrix array profiling and subsequent qPCR/protein validation revealed that induction of select Nrf2 target genes, HO-1 and NQO1, was significantly attenuated in cells adapted to 5% O2, despite nuclear accumulation and DNA binding of Nrf2. Diminished HO-1 induction under 5% O2 was stimulus independent and reversible upon re-adaptation to air or silencing of the Nrf2 repressor Bach1, notably elevated under 5% O2. Induction of GSH-related genes xCT and GCLM were oxygen and Bach1-insensitive during long-term culture under 5% O2, providing the first evidence that genes related to GSH synthesis mediate protection afforded by Nrf2-Keap1 defense pathway in cells adapted to physiological O2 levels encountered in vivo.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Vasos Coronarios/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Oxígeno/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Antioxidantes/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Endoteliales/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Venas/metabolismo
19.
Redox Biol ; 2: 786-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009780

RESUMEN

Culturing cells and tissues in vitro has provided valuable insights into the molecular mechanisms regulating redox signaling in cells with implications for medicine. However, standard culture techniques maintain mammalian cells in vitro under an artificial physicochemical environment such as ambient air and 5% CO2. Oxidative stress is caused by the rapid oxidation of cysteine to cystine in culture media catalyzed by transition metals, leading to diminished intracellular cysteine and glutathione (GSH) pools. Some cells, such as fibroblasts and macrophages, express cystine transport activity, designated as system [Formula: see text], which enables cells to maintain these pools to counteract oxidative stress. Additionally, many cells have the ability to activate the redox sensitive transcription factor Nrf2, a master regulator of cellular defenses against oxidative stress, and to upregulate xCT, the subunit of the [Formula: see text] transport system leading to increases in cellular GSH. In contrast, some cells, including lymphoid cells, embryonic stem cells and iPS cells, express relatively low levels of xCT and cannot maintain cellular cysteine and GSH pools. Thus, fibroblasts have been used as feeder cells for the latter cell types based on their ability to supply cysteine. Other key Nrf2 regulated gene products include heme oxygenase 1, peroxiredoxin 1 and sequestosome1. In macrophages, oxidized LDL activates Nrf2 and upregulates the scavenger receptor CD36 forming a positive feedback loop to facilitate removal of the oxidant from the vascular microenvironment. This review describes cell type specific responses to oxygen derived stress, and the key roles that activation of Nrf2 and membrane transport of cystine and cysteine play in the maintenance and proliferation of mammalian cells in culture.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cistina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre/metabolismo , Factor de Transcripción Activador 4/metabolismo , Animales , Antígenos CD36/metabolismo , Glutatión/metabolismo , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Estrés Oxidativo , Células Madre/citología
20.
Free Radic Biol Med ; 70: 174-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24583459

RESUMEN

Atherosclerosis and associated cardiovascular complications such as stroke and myocardial infarction are major causes of morbidity and mortality. We have previously reported a significant increase in mRNA levels of the scavenger receptor CD36 in aortae of cholesterol-fed rabbits and shown that vitamin E treatment attenuated increased CD36 mRNA expression. In the present study, we further investigated the redox signaling pathways associated with protection against atherogenesis induced by high dietary cholesterol and correlated these with CD36 expression and the effects of vitamin E supplementation in a rabbit model. Male albino rabbits were assigned to either a control group fed with a low vitamin E diet alone or a test group fed with a low vitamin E diet containing 2% cholesterol in the absence or presence of daily intramuscular injections of vitamin E (50mg/kg). To elucidate the mechanisms by which vitamin E supplementation alters the effects of hypercholesterolemia in rabbit aortae, we measured peroxisome proliferator-activated receptor γ (PPARγ), ATP-binding cassette transporter A1 (ABCA1), and matrix metalloproteinase-1 (MMP-1) mRNA levels by quantitative RT-PCR and the expression of MMP-1, nuclear factor-erythroid 2-related factor 2 (Nrf2), and glutathione S-transferase α (GSTα) protein by immunoblotting. The increased MMP-1 and decreased GSTα expression observed suggests that a cholesterol-rich diet contributes to the development of atherosclerosis, whereas vitamin E supplementation affords protection by decreasing MMP-1 and increasing PPARγ, GSTα, and ABCA1 levels in aortae of rabbits fed a cholesterol-rich diet. Notably, protein expression of Nrf2, the antioxidant transcription factor, was increased in both the cholesterol-fed and the vitamin E-supplemented groups. Although Nrf2 activation can promote CD36-mediated cholesterol uptake by macrophages, the increased induction of Nrf2-mediated antioxidant genes is likely to contribute to decreased lesion progression. Thus, our study demonstrates that Nrf2 can mediate both pro- and antiatherosclerotic effects.


Asunto(s)
Aterosclerosis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Vitamina E/administración & dosificación , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/patología , Colesterol en la Dieta/administración & dosificación , Dieta Alta en Grasa , Regulación de la Expresión Génica , Glutatión Transferasa/biosíntesis , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/patología , Isoenzimas/biosíntesis , Masculino , Metaloproteinasa 1 de la Matriz/biosíntesis , Conejos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA