Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Physiol ; 601(21): 4807-4821, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37772933

RESUMEN

Intrathoracic pressure (ITP) swings that permit spontaneous ventilation have physiological implications for the heart. We sought to determine the effect of respiration on cardiac output ( Q ̇ $\dot Q$ ) during semi-supine cycle exercise using a proportional assist ventilator to minimize ITP changes and lower the work of breathing (Wb ). Twenty-four participants (12 females) completed three exercise trials at 30%, 60% and 80% peak power (Wmax ) with unloaded (using a proportional assist ventilator, PAV) and spontaneous breathing. Intrathoracic and intraabdominal pressures were measured with balloon catheters placed in the oesophagus and stomach. Left ventricular (LV) volumes and Q ̇ $\dot Q$ were determined via echocardiography. Heart rate (HR) was measured with electrocardiogram and a customized metabolic cart measured oxygen uptake ( V ̇ O 2 ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Oesophageal pressure swings decreased from spontaneous to PAV breathing by -2.8 ± 3.1, -4.9 ± 5.7 and -8.1 ± 7.7 cmH2 O at 30%, 60% and 80% Wmax , respectively (P = 0.01). However, the decreases in Wb were similar across exercise intensities (27 ± 42 vs. 35 ± 24 vs. 41 ± 22%, respectively, P = 0.156). During PAV breathing compared to spontaneous breathing, Q ̇ $\dot Q$ decreased by -1.0 ± 1.3 vs. -1.4 ± 1.4 vs. -1.5 ± 1.9 l min-1 (all P < 0.05) and stroke volume decreased during PAV breathing by -11 ± 12 vs. -9 ± 10 vs. -7 ± 11 ml from spontaneous breathing at 30%, 60% and 80% Wmax , respectively (all P < 0.05). HR was lower during PAV breathing by -5 ± 4 beats min-1 at 80% Wmax (P < 0.0001). Oxygen uptake decreased by 100 ml min-1 during PAV breathing compared to spontaneous breathing at 80% Wmax (P < 0.0001). Overall, attenuating ITPs mitigated LV preload and ejection, thereby suggesting that the ITPs associated with spontaneous respiration impact cardiac function during exercise. KEY POINTS: Pulmonary ventilation is accomplished by alterations in intrathoracic pressure (ITP), which have physiological implications on the heart and dynamically influence the loading parameters of the heart. Proportional assist ventilation was used to attenuate ITP changes and decrease the work of breathing during exercise to examine its effects on left ventricular (LV) function. Proportional assist ventilation with progressive exercise intensities (30%, 60% and 80% Wmax ) led to reductions in cardiac output at all intensities, primarily through reductions in stroke volume. Decreases in LV end-diastolic volume (30% and 60% Wmax ) and increases in LV end-systolic volume (80% Wmax ) were responsible for the reduction in stroke volume. The relationship between cardiac output and oxygen uptake is disrupted during respiratory muscle unloading.


Asunto(s)
Corazón , Respiración , Femenino , Humanos , Volumen Sistólico , Función Ventricular Izquierda , Oxígeno , Gasto Cardíaco
2.
Exp Physiol ; 106(1): 160-174, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893898

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the relative contribution of a putative tonic splenic contraction to the haematological acclimatization process during high altitude ascent in native lowlanders? What is the main finding and its importance? Spleen volume decreased by -14.3% (-15.2 ml) per 1000 m ascent, with an attenuated apnoea-induced [Hb] increase, attesting to a tonic splenic contraction during high altitude ascent. The [Hb]-enhancing function of splenic contraction may contribute to restoring oxygen content early in the acclimatization process at high altitude. ABSTRACT: Voluntary apnoea causes splenic contraction and reductions in heart rate (HR; bradycardia), and subsequent transient increases in haemoglobin concentration ([Hb]). Ascent to high altitude (HA) induces systemic hypoxia and reductions in oxygen saturation ( SpO2 ), which may cause tonic splenic contraction, which may contribute to haematological acclimatization associated with HA ascent. We measured resting cardiorespiratory variables (HR, SpO2 , [Hb]) and resting splenic volume (via ultrasound) during incremental ascent from 1400 m (day 0) to 3440 m (day 3), 4240 m (day 7) and 5160 m (day 10) in non-acclimatized native lowlanders during assent to HA in the Nepal Himalaya. In addition, apnoea-induced responses in HR, SpO2 and splenic volume were measured before and after two separate voluntary maximal apnoeas (A1-A2) at 1400, 3440 and 4240 m. Resting spleen volume decreased -14.3% (-15.2 ml) per 1000 m with ascent, from 140 ± 41 ml (1400 m) to 108 ± 28 ml (3440 m; P > 0.99), 94 ± 22 ml (4240 m; P = 0.009) and 84 ± 28 ml (5160 m; P = 0.029), with concomitant increases in [Hb] from 125 ± 18.3 g l-1 (1400 m) to 128 ± 10.4 g l-1 (3440 m), 138.8 ± 12.7 g l-1 (4240 m) and 157.5 ± 8 g l-1 (5160 m; P = 0.021). Apnoea-induced splenic contraction was 50 ± 15 ml (1400 m), 44 ± 17 ml (3440 m; P > 0.99) and 26 ± 8 ml (4240 m; P = 0.002), but was not consistently associated with increases in [Hb]. The apnoea-induced bradycardia was more pronounced at 3440 m (A1: P = 0.04; A2: P = 0.094) and at 4240 m (A1: P = 0.037 A2: P = 0.006) compared to values at 1400 m. We conclude that hypoxia-induced splenic contraction at rest (a) may contribute to restoring arterial oxygen content through its [Hb]-enhancing contractile function and (b) eliminates further apnoea-induced [Hb] increases in hypoxia. We suggest that tonic splenic contraction may contribute to haematological acclimatization early in HA ascent in humans.


Asunto(s)
Altitud , Apnea/fisiopatología , Contracción Muscular/fisiología , Saturación de Oxígeno/fisiología , Aclimatación/fisiología , Adulto , Femenino , Humanos , Hipoxia/fisiopatología , Masculino , Consumo de Oxígeno/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA