Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Pathol Res Pract ; 253: 154972, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064866

RESUMEN

PURPOSE: Radiotherapy plays an important role in the treatment of non-small cell lung cancer, and the aim of this study was to explore the potential association of single gene mutation or pathway mutations with radiotherapy response using targeted next-generation sequencing (NGS) testing of peripheral blood specimens. MATERIAL AND METHODS: We performed NGS containing 425 genes on peripheral blood specimens from 13 NSCLC patients pre- and post-radiotherapy or post-radiotherapy. Patients whose tumors were in complete response or partial response within 1 month after radiotherapy were classified as a radiotherapy-sensitive group; otherwise, they were categorized as a radiotherapy-resistant group. The relationship between single gene mutations, signaling pathway mutations, dynamic fluctuations in circulating tumor DNA (ctDNA), and radiotherapy response was investigated. RESULTS: Of these 13 patients,6 patients were categorized as a radiotherapy-sensitive group (46.2%), and 7 patients were categorized as a radiotherapy-resistant group (53.8%). No correlation between single gene mutations and response to radiotherapy. Mutations in the SWI/SNF complex were more likely to occur in the radiotherapy-sensitive group than in the other group (p = 0.07). Among all patients,9 patients underwent NGS tests pre- and post-radiotherapy. Dynamic analysis based on ctDNA before and after treatment revealed that a decrease in ctDNA abundance was observed in all patients in the radiotherapy-sensitive group. CONCLUSIONS: SWI/SNF complex mutations may be potential predictive biomarkers of radiotherapy response. Decreased ctDNA abundance after radiotherapy correlates with better efficacy of radiotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Cell Mol Bioeng ; 16(3): 205-218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37456789

RESUMEN

Introduction: Cancer metastasis is associated with increased cancer incidence, recurrence, and mortality. The role of cell contact guidance behaviors in cancer metastasis has been recognized but has not been elucidated yet. Methods: The contact guidance behavior of cancer cells in response to topographical constraints is identified using microgrooved substrates with varying dimensions at the mesoscopic scale. Then, the cell morphology is determined to quantitatively analyze the effects of substrate dimensions on cells contact guidance. Cell density and migrate velocity signatures within the cellular population are determined using time-lapse phase-contrast microscopy. The effect of soluble factors concentration is determined by culturing cells upside down. Then, the effect of cell-substrate interaction on cell migration is investigated using traction force microscopy. Results: With increasing depth and decreasing groove width, cell elongation and alignment are enhanced, while cell spreading is inhibited. Moreover, cells display preferential distribution on the ridges, which is found to be more pronounced with increasing depth and groove width. Determinations of cell density and migration velocity signatures reveal that the preferential distribution on ridges is caused by cell upward migration. Combined with traction force measurement, we find that migration toward ridges is governed by different cell-substrate interactions between grooves and ridges caused by geometrical constraints. Interestingly, the upward migration of cells at the mesoscopic scale is driven by entropic maximization. Conclusions: The mesoscopic cell contact guidance mechanism based on the entropic force driven theory provides basic support for the study of cell alignment and migration along healthy tissues with varying size, thereby aiding in the prediction of cancer metastasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00766-y.

3.
PLoS Pathog ; 19(7): e1011512, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463171

RESUMEN

L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.


Asunto(s)
Legionella pneumophila , Legionella pneumophila/metabolismo , Actinas/metabolismo , Polimerizacion , Fosfatos de Fosfatidilinositol/metabolismo , Vacuolas/metabolismo , Proteínas Bacterianas/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1139222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124752

RESUMEN

Objective: The purpose of this study was to build nomograms for predicting the survival of individual advanced pleural mesothelioma (MPM) patients using the Surveillance, Epidemiology, and End Results (SEER) database. Methods: The 1251 patients enrolled from the SEER database were randomized (in a 7:3 ratio) to a training cohort and an internal validation cohort. Eighty patients were enrolled from the Harbin Medical University Cancer Hospital as the external validation cohort. Nomograms were constructed from variables screened by univariate or multivariate Cox regression analyses and evaluated by consistency indices (C-index), calibration plots, and receiver operating characteristic (ROC) curves. Patients from the SEER database who received chemotherapy alone and chemoradiotherapy were statistically paired using propensity score matching of the two groups and performed subgroup analysis in the screened variables. Results: The nomograms are well-structured and well-validated prognostic maps constructed from four variables: gender, histology, AJCC stage, and treatment. All individuals were allocated into high-risk versus low-risk groups based on the median risk score of the training cohort, with the high-risk group having worse OS and CSS in all three cohorts (P<0.05). The outcomes of the subgroup analysis indicated that the advanced MPM patients receiving chemotherapy with or without local radiotherapy do not affect OS or CSS. Conclusion: The accurate nomograms to predict the survival of patients with advanced MPM were built and validated based on an analysis of the SEER database with an external validation cohort. The study suggests that the additional local radiotherapy to chemotherapy does not increase the survival benefit of patients.


Asunto(s)
Mesotelioma Maligno , Nomogramas , Humanos , Pueblos del Este de Asia , Estadificación de Neoplasias , Puntaje de Propensión
5.
Talanta ; 211: 120680, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070562

RESUMEN

Digital PCR enabled high-sensitivity and quantitative measurements of rare biological variants. A new digital droplet-enabled PCR technology was introduced in this paper, which partitioned genetic targets into a planar nanoliter droplet array by using a microfluidic impact printer (MIP) with a disposable microfluidic chip. The accuracy of this MIP-enabled PCR technology was verified by detecting a series of concentration gradients of GAPDH gene across spanning four orders of magnitude (from 0.464 copies/µL to 464 copies/µL). Furthermore, this technology was applied to detect the expressions of p53 gene in colon cancer tissues and adjacent nontumorous tissues, from which the copies of the nucleic acids could be absolute-quantitatively determined. The outcomes were consistent with the results of using the conventional real-time PCR, demonstrating a great potential of the MIP-enabled digital PCR in detecting gene expression in clinical samples.


Asunto(s)
Neoplasias del Colon/genética , Técnicas Analíticas Microfluídicas , Reacción en Cadena de la Polimerasa/métodos , Proteína p53 Supresora de Tumor/genética , Colon/metabolismo , ADN , Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , Plásmidos
6.
Nature ; 557(7707): 729-733, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795346

RESUMEN

Ubiquitination is a post-translational modification that regulates many cellular processes in eukaryotes1-4. The conventional ubiquitination cascade culminates in a covalent linkage between the C terminus of ubiquitin (Ub) and a target protein, usually on a lysine side chain1,5. Recent studies of the Legionella pneumophila SidE family of effector proteins revealed a ubiquitination method in which a phosphoribosyl ubiquitin (PR-Ub) is conjugated to a serine residue on substrates via a phosphodiester bond6-8. Here we present the crystal structure of a fragment of the SidE family member SdeA that retains ubiquitination activity, and determine the mechanism of this unique post-translational modification. The structure reveals that the catalytic module contains two distinct functional units: a phosphodiesterase domain and a mono-ADP-ribosyltransferase domain. Biochemical analysis shows that the mono-ADP-ribosyltransferase domain-mediated conversion of Ub to ADP-ribosylated Ub (ADPR-Ub) and the phosphodiesterase domain-mediated ligation of PR-Ub to substrates are two independent activities of SdeA. Furthermore, we present two crystal structures of a homologous phosphodiesterase domain from the SidE family member SdeD 9 in complexes with Ub and ADPR-Ub. The structures suggest a mechanism for how SdeA processes ADPR-Ub to PR-Ub and AMP, and conjugates PR-Ub to a serine residue in substrates. Our study establishes the molecular mechanism of phosphoribosyl-linked ubiquitination and will enable future studies of this unusual type of ubiquitination in eukaryotes.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Legionella pneumophila/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Ubiquitinación , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Legionella pneumophila/genética , Lisina/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo
7.
J Cell Biol ; 209(1): 97-110, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25869669

RESUMEN

It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain-containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway.


Asunto(s)
Encéfalo/enzimología , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Movimiento Celular , Cristalografía por Rayos X , Endosomas/enzimología , Células HEK293 , Células HeLa , Humanos , Inositol Polifosfato 5-Fosfatasas , Integrinas/metabolismo , Ratones , Modelos Moleculares , Mutación Missense , Especificidad de Órganos , Monoéster Fosfórico Hidrolasas/química , Conformación Proteica , Transporte de Proteínas , Receptores de Transferrina/metabolismo , Transferrina/metabolismo
8.
Biochim Biophys Acta ; 1851(6): 698-710, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25264170

RESUMEN

Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Fosfohidrolasa PTEN/química , Monoéster Fosfórico Hidrolasas/química , Proteínas Tirosina Fosfatasas no Receptoras/química , Bacterias/química , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Biocatálisis , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Inositol Polifosfato 5-Fosfatasas , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Nefrolitiasis/enzimología , Nefrolitiasis/genética , Nefrolitiasis/patología , Síndrome Oculocerebrorrenal/enzimología , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Especificidad por Sustrato
9.
J Biol Chem ; 288(34): 24518-27, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23843460

RESUMEN

Bacterial pathogen Legionella pneumophila is the causative agent of Legionnaires' disease, which is associated with intracellular replication of the bacteria in macrophages of human innate immune system. Recent studies indicate that pathogenic bacteria can subvert host cell phosphoinositide (PI) metabolism by translocated virulence effectors. However, in which manner Legionella actively exploits PI lipids to benefit its infection is not well characterized. Here we report that L. pneumophila encodes an effector protein, named SidP, that functions as a PI-3-phosphatase specifically hydrolyzing PI(3)P and PI(3,5)P2 in vitro. This activity of SidP rescues the growth phenotype of a yeast strain defective in PI(3)P phosphatase activity. Crystal structure of SidP orthologue from Legionella longbeachae reveals that this unique PI-3-phosphatase is composed of three distinct domains: a large catalytic domain, an appendage domain that is inserted into the N-terminal portion of the catalytic domain, and a C-terminal α-helical domain. SidP has a small catalytic pocket that presumably provides substrate specificity by limiting the accessibility of bulky PIs with multiple phosphate groups. Together, our identification of a unique family of Legionella PI phosphatases highlights a common scheme of exploiting host PI lipids in many intracellular bacterial pathogen infections.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/enzimología , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolasas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Humanos , Enfermedad de los Legionarios/enzimología , Enfermedad de los Legionarios/patología , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
10.
Proc Natl Acad Sci U S A ; 109(34): 13567-72, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22872863

RESUMEN

Legionella pneumophila is an opportunistic intracellular pathogen that causes sporadic and epidemic cases of Legionnaires' disease. Emerging data suggest that Legionella infection involves the subversion of host phosphoinositide (PI) metabolism. However, how this bacterium actively manipulates PI lipids to benefit its infection is still an enigma. Here, we report that the L. pneumophila virulence factor SidF is a phosphatidylinositol polyphosphate 3-phosphatase that specifically hydrolyzes the D3 phosphate of PI(3,4)P(2) and PI(3,4,5)P(3). This activity is necessary for anchoring of PI(4)P-binding effectors to bacterial phagosomes. Crystal structures of SidF and its complex with its substrate PI(3,4)P(2) reveal striking conformational rearrangement of residues at the catalytic site to form a cationic pocket that specifically accommodates the D4 phosphate group of the substrate. Thus, our findings unveil a unique Legionella PI phosphatase essential for the establishment of lipid identity of bacterial phagosomes.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/enzimología , Monoéster Fosfórico Hidrolasas/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Hidrólisis , Lípidos/química , Conformación Molecular , Oxidación-Reducción , Fagocitosis , Fagosomas/metabolismo , Fosfatidilinositoles/química , Estructura Terciaria de Proteína , Especificidad por Sustrato
11.
J Biol Chem ; 286(35): 30859-30866, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21757700

RESUMEN

Inositol-requiring enzyme 1α (IRE1α), an endoplasmic reticulum-resident sensor for mammalian unfolded protein response, is a bifunctional enzyme containing kinase and RNase domains critical for trans-autophosphorylation and Xbp1 mRNA splicing, respectively, in response to endoplasmic reticulum stress. However, the amino acid residues important for its function and activation remain largely unexplored. Here, through analysis of IRE1α mutants associated with human somatic cancers, we have identified a highly conserved proline residue at position 830 (Pro(830)) that is critical for its structural integrity and hence, the activation of both kinase and RNase domains. Structural analysis revealed that Pro(830) may form a highly conserved structural linker with adjacent tryptophan and tyrosine residues at positions 833 and 945 (Trp(833) and Tyr(945)), thereby bridging the kinase and RNase domains. Indeed, mutation of Pro(830) to leucine (P830L) completely abolished the kinase and RNase activities, significantly decreased protein stability, and prevented oligomerization of IRE1α upon ER stress; similar observations were made for mutations of Trp(833) to alanine (W833A) and to a lesser extent for Y945A. Our finding may facilitate the identification of small molecules to compromise IRE1α function specifically.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Cicloheximida/farmacología , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Triptófano/química , Tirosina/química
12.
Cell ; 144(3): 389-401, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295699

RESUMEN

Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Animales , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
EMBO J ; 27(14): 1932-43, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18566586

RESUMEN

The target of rapamycin (TOR), as part of the rapamycin-sensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl-terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination-mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis.


Asunto(s)
Proteína Quinasa C/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Pliegue de Proteína , Proteína Quinasa C/química , Proteínas Proto-Oncogénicas c-akt/química , Serina-Treonina Quinasas TOR
14.
Mol Membr Biol ; 25(2): 115-27, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18307099

RESUMEN

Residues Tyr-110 through Gly-115 of serotonin transporter were replaced, one at a time, with cysteine. Of these mutants, only G113C retained full activity for transport, Q111C and N112C retained partial activity, but Y110C, G114C and G115C were inactive. Poor surface expression was at least partly responsible for the lack of transport by G114C and G115C. In membrane preparations, Y110C through G113C all bound a high affinity cocaine analog similarly to the wild type. Treatment with methanethiosulfonate reagents increased the transport activity of Q111C and N112C to essentially wild-type levels but had no measurable effect on the other mutants. The decreased activity of Q111C and N112C resulted from an increase in the K(M) for serotonin that was not accompanied by a decrease in serotonin binding affinity. Superfusion experiments indicated a defect in 5-HT exchange. Modification of the inserted cysteine residues reversed the increase in K(M) and the poor exchange, also with no effect on serotonin affinity. The results suggest that Gln-111 and Asn-112 are not required for substrate binding but participate in subsequent steps in the transport cycle.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HeLa , Humanos , Indicadores y Reactivos , Cinética , Ligandos , Mesilatos/farmacología , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína , Ratas , Eliminación de Secuencia , Relación Estructura-Actividad
15.
Nat Genet ; 32(2): 267-72, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12244316

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs covalently bound topoisomerase I-DNA complexes and is essential for preventing the formation of double-strand breaks that result when stalled topoisomerase I complexes interfere with DNA replication in yeast. Here we show that a deficiency of this DNA repair pathway in humans does not predispose to neoplasia or dysfunctions in rapidly replicating tissues, but instead causes spinocerebellar ataxia with axonal neuropathy (SCAN1) by affecting large, terminally differentiated, non-dividing neuronal cells. Using genome-wide linkage mapping and a positional candidate approach in a Saudi Arabian family affected with autosomal recessive SCAN1, we identified a homozygous mutation in TDP1 (A1478G) that results in the substitution of histidine 493 with an arginine residue. The His493 residue is conserved in TDP1 across species and is located in the active site of the enzyme. Protein modeling predicts that mutation of this amino acid to arginine will disrupt the symmetric structure of the active site. We propose that loss-of-function mutations in TDP1 may cause SCAN1 either by interfering with DNA transcription or by inducing apoptosis in postmitotic neurons.


Asunto(s)
Reparación del ADN/genética , Hidrolasas Diéster Fosfóricas/genética , Ataxias Espinocerebelosas/genética , Adulto , Sitios de Unión , Cerebelo/patología , Mapeo Cromosómico , Cromosomas Humanos Par 14 , Cristalografía por Rayos X , Reparación del ADN/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Estructura Terciaria de Proteína , Nervio Sural/patología , Nervio Sural/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA