Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Science ; 375(6582): eabc4203, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175796

RESUMEN

Adaptation to nutrient scarcity involves an orchestrated response of metabolic and signaling pathways to maintain homeostasis. We find that in the fat body of fasting Drosophila, lysosomal export of cystine coordinates remobilization of internal nutrient stores with reactivation of the growth regulator target of rapamycin complex 1 (TORC1). Mechanistically, cystine was reduced to cysteine and metabolized to acetyl-coenzyme A (acetyl-CoA) by promoting CoA metabolism. In turn, acetyl-CoA retained carbons from alternative amino acids in the form of tricarboxylic acid cycle intermediates and restricted the availability of building blocks required for growth. This process limited TORC1 reactivation to maintain autophagy and allowed animals to cope with starvation periods. We propose that cysteine metabolism mediates a communication between lysosomes and mitochondria, highlighting how changes in diet divert the fate of an amino acid into a growth suppressive program.


Asunto(s)
Cistina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ayuno , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Transcripción/metabolismo , Acetilcoenzima A/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Animales , Autofagia , Ciclo del Ácido Cítrico , Cisteína/metabolismo , Cisteína/farmacología , Citosol/metabolismo , Dieta con Restricción de Proteínas , Drosophila melanogaster/crecimiento & desarrollo , Cuerpo Adiposo/fisiología , Modelos Animales , Transducción de Señal
2.
Biochemistry ; 58(13): 1786-1798, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30817134

RESUMEN

The deficiency of the molybdenum cofactor (Moco) is an autosomal recessive disease, which leads to the loss of activity of all molybdoenzymes in humans with sulfite oxidase being the essential protein. Moco deficiency generally results in death in early childhood. Moco is a sulfur-containing cofactor synthesized in the cytosol with the sulfur being provided by a sulfur relay system composed of the l-cysteine desulfurase NFS1, MOCS3, and MOCS2A. Human MOCS3 is a dual-function protein that was shown to play an important role in Moco biosynthesis and in the mcm5s2U thio modifications of nucleosides in cytosolic tRNAs for Lys, Gln, and Glu. In this study, we constructed a homozygous MOCS3 knockout in HEK293T cells using the CRISPR/Cas9 system. The effects caused by the absence of MOCS3 were analyzed in detail. We show that sulfite oxidase activity was almost completely abolished, on the basis of the absence of Moco in these cells. In addition, mcm5s2U thio-modified tRNAs were not detectable. Because the l-cysteine desulfurase NFS1 was shown to act as a sulfur donor for MOCS3 in the cytosol, we additionally investigated the impact of a MOCS3 knockout on the cellular localization of NFS1. By different methods, we identified a MOCS3-independent novel localization of NFS1 at the centrosome.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Centrosoma/metabolismo , Nucleotidiltransferasas/metabolismo , Sulfurtransferasas/metabolismo , Aconitato Hidratasa/metabolismo , Sistemas CRISPR-Cas , Liasas de Carbono-Azufre/análisis , Centrosoma/ultraestructura , Coenzimas/metabolismo , Células HEK293 , Células HeLa , Humanos , Isocitrato Deshidrogenasa/metabolismo , Metaloproteínas/metabolismo , Cofactores de Molibdeno , Nucleotidiltransferasas/análisis , Nucleotidiltransferasas/genética , Pteridinas/metabolismo , ARN de Transferencia/metabolismo , Sulfito-Oxidasa/metabolismo , Sulfurtransferasas/análisis , Sulfurtransferasas/genética
3.
Front Physiol ; 9: 50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491838

RESUMEN

Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.

4.
Biochemistry ; 56(12): 1797-1808, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28271877

RESUMEN

Assembly of iron-sulfur (FeS) clusters is an important process in living cells. The initial sulfur mobilization step for FeS cluster biosynthesis is catalyzed by l-cysteine desulfurase NFS1, a reaction that is localized in mitochondria in humans. In humans, the function of NFS1 depends on the ISD11 protein, which is required to stabilize its structure. The NFS1/ISD11 complex further interacts with scaffold protein ISCU and regulator protein frataxin, thereby forming a quaternary complex for FeS cluster formation. It has been suggested that the role of ISD11 is not restricted to its role in stabilizing the structure of NFS1, because studies of single-amino acid variants of ISD11 additionally demonstrated its importance for the correct assembly of the quaternary complex. In this study, we are focusing on the N-terminal region of ISD11 to determine the role of N-terminal amino acids in the formation of the complex with NFS1 and to reveal the mitochondrial targeting sequence for subcellular localization. Our in vitro studies with the purified proteins and in vivo studies in a cellular system show that the first 10 N-terminal amino acids of ISD11 are indispensable for the activity of NFS1 and especially the conserved "LYR" motif is essential for the role of ISD11 in forming a stable and active complex with NFS1.


Asunto(s)
Liasas de Carbono-Azufre/química , Proteínas de Unión a Hierro/química , Proteínas Reguladoras del Hierro/química , Proteínas Hierro-Azufre/química , Hierro/química , Mitocondrias/metabolismo , Azufre/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mitocondrias/genética , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Transducción de Señal , Azufre/metabolismo , Frataxina
5.
PLoS One ; 8(4): e60869, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593335

RESUMEN

In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Coenzimas/biosíntesis , Cisteína/metabolismo , Citosol/metabolismo , Metaloproteínas/biosíntesis , Azufre/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Cofactores de Molibdeno , Proteínas Mutantes/metabolismo , Neurospora/enzimología , Nitrato-Reductasa/metabolismo , Nucleotidiltransferasas/metabolismo , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Pteridinas , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/metabolismo , Sulfurtransferasas/metabolismo , Resonancia por Plasmón de Superficie
6.
J Biol Chem ; 283(37): 25178-25185, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18650437

RESUMEN

The human MOCS3 gene encodes a protein involved in activation and sulfuration of the C terminus of MOCS2A, the smaller subunit of the molybdopterin (MPT) synthase. MPT synthase catalyzes the formation of the dithiolene group of MPT that is required for the coordination of the molybdenum atom in the last step of molybdenum cofactor (Moco) biosynthesis. The two-domain protein MOCS3 catalyzes both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of MOCS2A by its C-terminal rhodanese-like domain (RLD). The low activity of MOCS3-RLD with thiosulfate as sulfur donor and detailed mutagenesis studies showed that thiosulfate is most likely not the physiological sulfur source for Moco biosynthesis in eukaryotes. It was suggested that an L-cysteine desulfurase might be involved in the sulfuration of MOCS3 in vivo. In this report, we investigated the involvement of the human L-cysteine desulfurase Nfs1 in sulfur transfer to MOCS3-RLD. A variant of Nfs1 was purified in conjunction with Isd11 in a heterologous expression system in Escherichia coli, and the kinetic parameters of the purified protein were determined. By studying direct protein-protein interactions, we were able to show that Nfs1 interacted specifically with MOCS3-RLD and that sulfur is transferred from L-cysteine to MOCS3-RLD via an Nfs1-bound persulfide intermediate. Because MOCS3 was shown to be located in the cytosol, our results suggest that cytosolic Nfs1 has an important role in sulfur transfer for the biosynthesis of Moco.


Asunto(s)
Liasas de Carbono-Azufre/fisiología , Coenzimas/biosíntesis , Citoplasma/metabolismo , Regulación de la Expresión Génica , Metaloproteínas/biosíntesis , Nucleotidiltransferasas/metabolismo , Sulfurtransferasas/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Catálisis , Humanos , Cinética , Modelos Biológicos , Cofactores de Molibdeno , Unión Proteica , Estructura Terciaria de Proteína , Pteridinas , Azufre/metabolismo , Resonancia por Plasmón de Superficie , Tiosulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA